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Abstract
Modern energy-harvesting devices [23] use on-device com-
pute to discard data uninteresting to the application, improv-
ing energy availability. These devices capture data at fixed
rate, and process captured data at a rate that varies with
environmental factors like input power and event activity. If
capture rate exceeds processing rate, new inputs are stored
in a small on-device input buffer (hundreds of kBs). When
the input buffer fills up, the device discards newer inputs,
missing potentially interesting events. Energy-harvesting de-
vices must avoid such input buffer overflows (IBO) to avoid
missing interesting events. A static solution to IBOs is impos-
sible given dynamic variations in processing rate, and prior
research fails to provide a suitable dynamic solution. We
propose Quetzal, a new hardware-software solution targeted
at avoiding IBOs. Quetzal’s software has two parts: a new
energy-aware scheduler that selects jobs with the lowest end-
to-end latency (including energy recharging), and a runtime
which uses queueing-theory to predict if the selected job will
cause IBOs. Quetzal reacts to imminent IBOs by degrading
the scheduled job. Quetzal’s scheduler and runtime use a
simple, system-agnostic hardware circuit to measure power
at runtime. Quetzal reduces events missed due to IBOs by
up to 4.2× compared to several baselines.

CCSConcepts: •Computer systems organization→Em-
bedded software;Embeddedhardware; Sensor networks;
• Hardware→ Sensor applications and deployments; Sensor
devices and platforms; • Mathematics of computing →
Queueing theory.

Keywords: energy-harvesting devices; input-buffer overflows;
intermittent computing; energy-aware scheduling
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1 Introduction
Energy-harvesting devices enable scalable, affordable and
environmentally-safe deployments in applications likewildlife
tracking and city surveillance. These devices replace bulky,
expensive, and poisonous batteries with energy harvesters
to collect clean environmental energy (e.g. solar, RF). Typical
energy-harvesting devices have sensors (e.g. camera), a com-
pute core (e.g. microcontroller) and peripherals (e.g. radio),
all powered through energy harvested and stored in a small
supercapacitor. Figure 1 shows an example device operation
(like [23]), periodically capturing image data. While earlier
devices transmitted every input, recent works [23, 31, 46]
use on-device compute to identify inputs ‘interesting‘ to
the application. Such devices transmit fewer uninteresting
inputs, recovering energy and wireless bandwidth for inter-
esting inputs. The example above uses a cheap-discarding
step to eliminate images that are definitely uninteresting (e.g.
empty background), storing the rest in a input buffer to be
processed further. The stored images are then evaluated for
‘interesting‘-ness using complex processing (e.g. ML); the
radio transmits images deemed ‘interesting‘.
Problem Overview: If the device processes images slower
than the storing rate, the input buffer starts to fill up. Since
energy-harvesting devices have severely limited memory
(few hundred KBs), the input buffer easily overflows. Once
the input buffer is full, the device cannot store new data, miss-
ing events and reducing sensing effectiveness. Therefore, it
is critical to prevent the input buffer from overflowing.
Challenge: Statically avoiding input buffer overflows (IBOs)
is challenging since processing time varies dynamically. End-
to-end processing time in energy-harvesting devices varies
due to two main reasons: input power and event activity. In-
put power causes energy-recharging time to vary, in turn con-
trolling end-to-end processing [22]. On-device processing
draws energy from a supercapacitor; if the supercapacitor dis-
charges below a threshold, the device must wait to recharge
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Figure 1. An example energy-harvesting system that senses
periodically, discarding some inputs and buffering the rest for
processing. If inputs are stored faster than they are processed,
the input buffer overflows, discarding newer, potentially
interesting inputs.

energy before continuing execution. Energy recharging is
therefore on the critical path of end-to-end processing time,
causing it to vary dynamically with input power. Event ac-
tivity affects the contents of the captured data. High event
activity (fewer inputs cheaply discarded) requires complex
processing on more inputs, leading to slower processing
rates. Low event activity (more inputs cheaply discarded)
has lower complex processing requirements, leading to faster
processing rates. Given these dynamic variations in end-to-
end processing time, it is challenging to statically avoid IBOs,
requiring a dynamic runtime solution.
Limitations of PriorWork: Energy-harvesting devices are
attracting increasing interest from researchers, with sev-
eral recent works on programming models and tools [16,
17, 39, 49, 59, 61, 73, 83, 84], architectural interfaces [18, 74]
and energy-minimal architectures [28–30]. Some works pro-
pose schedulers [43, 62] that guarantee the execution of peri-
odic events (e.g. image-capture, diff) under variable energy-
harvesting conditions. However, existing works fail to iden-
tify and address the challenge that IBOs pose for periodic
energy-harvesting devices. The main goal of this work is
therefore to reduce the events missed due to IBOs.
Our approach:Quetzal is an energy-aware, queueing-theory-
based software system that reduces events missed due to
IBOs. Quetzal is composed of a job scheduling algorithm
(Energy-aware Shortest Job First – SJF) and runtime software
that detects and avoids potential IBOs for the scheduled job.
Quetzal uses the Energy-aware SJF algorithm to minimize
the end-to-end processing time at the given environmen-
tal conditions. Since the Energy-aware shortest job can still
cause an IBO, Quetzal dynamically detects potential IBOs
and uses degradation of task quality to reduce end-to-end
processing time and consequently, the risk of an IBO. Quet-
zal uses simple hardware support to dynamically monitor
harvested and execution power. To use Quetzal, a program-
mer first annotates tasks and jobs in their application. A task
is any computation that processes a periodic input, such as
machine-learning (ML) inference. Some tasks are degradable,
which can adaptively vary their time and energy cost, for

example, using differently quantized ML models. A job is
composed as a sequence of several tasks, one of which is
degradable. One job can spawn another job by inserting its
input into the device’s input input buffer. Quetzal schedules
jobs by extending the Shortest Job First (SJF) policy to ac-
count for energy collection time. Quetzal addresses two key
challenges with avoiding IBOs in energy-harvesting devices.

First, identifying the shortest job is hard. Job processing
time varies with input power. With low input power, energy
collection dominates; ML inference uses less energy and is
thus faster than sending a radio packet. With high input
power, compute time dominates and it is faster to send a
packet. The environment also influences scheduling, because
frequent interesting events will activate more tasks and slow
processing. Quetzal addresses this challenge by dynamically
tracking input power and per-task execution probability
when determining end-to-end job processing time.

Second, the shortest job may still cause an IBO under low
input power and/or high event activity. Quetzal uses Little’s
Law to predict imminent IBOs, estimating how many new in-
puts will be stored over the execution of the shortest job. If an
IBO is imminent, Quetzal degrades the job’s degradable task
to decrease its time and energy requirements. Quetzal evalu-
ates all available degradation options for a task, selecting the
highest-quality option that avoids the IBO, if any. Quetzal
requires multiple integer divisions, which is expensive on
ultra-low-powermicrocontrollers like the Texas Instruments’
MSP430 [86] (100s of clock cycles per division). We present
a novel, simple hardware circuit that measures input and
execution power on any system in a manner that eliminates
integer divisions. Our circuit uses two diodes, a multiplexer
and a low-power 8-bit analog-to-digital converter (ADC).

The contributions of our work, Quetzal, are as follows:

• A new scheduler, Energy-aware SJF, that incorporates
energy-recharging time to identify jobs with shortest end-
to-end processing times.
• A new IBO-detection and reaction engine to predict if the
shortest job will cause an IBO, and to degrade tasks only
as much as required to avoid the IBO.
• Quetzal’s hardware-software solution that simplifies com-
putations using execution- and input power.
• An evaluation that showsQuetzal reduces the eventsmissed
due to input buffer overflows by up to 4.2× compared
against several baselines.

2 Background
The main goal of Quetzal is to reduce the events missed due
to IBOs in periodic energy-harvesting devices. We provide
context for this problemwith an overview of a typical energy-
harvesting device (2.1) and the risk presented by IBOs (2.2).
We then quantitatively motivate Quetzal by showing that
naive approaches to the problem are ineffective (2.3)
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2.1 Primer on Energy-harvesting Sensors
Sensor devices convert physical information from their en-
vironments into digital data, enabling applications like mon-
itoring infrastructure, public space [14, 67], and wildlife [34,
55]. Many applications require large-scale deployments, of-
ten in remote, inaccessible locations. Battery-powered de-
vices fail to meet the needs of such applications. Batteries
increase device volume, mass, and cost, require frequent
replacements, and can leak hazardous chemicals into the
environment. Sensors powered using harvested energy (e.g.
solar, RF) are a promising alternative to battery-powered
devices, enabling smaller sizes, and large-scale, long-term
deployments with little maintenance. Energy-harvesting sen-
sor devices may be “sense-and-transmit” or may process data
locally. Sense-and-transmit devices are simple, and indis-
criminately transmit all sensed data to a base station. Recent
work [23, 31, 46] showed the benefit of on-device compute
to identify and transmit data of interest to an application,
discarding uninteresting data. On-device compute avoids the
energy wasted transmitting uninteresting data and reduces
network congestion in large deployments.

Figure 1 shows an example of on-device compute in energy-
harvesting devices [23, 46], where a camera periodically cap-
tures images. The device only stores images different from
the previous one, discarding unchanged images. Stored im-
ages are processed on the device using application-specific
logic. The shown example uses on-device ML to identify
interesting data (e.g. images of people or exotic birds) to be
subsequently compressed and transmitted. A key challenge
in such devices is that images arrive strictly periodically and
a device needs to process frames as they arrive, regardless of
harvestable energy or interesting activity in the environment.
Failure to keep up with the arrival of new inputs results in in-
put buffer overflows and loss of data. A flurry of recent work
sought to enable and optimize on-device compute in energy-
harvesting devices, including schedulers [43, 62], program-
ming models and tools [16, 17, 39, 49, 59, 61, 73, 83, 84], ar-
chitectural interfaces [18, 74] and energy-minimal computer
architectures [28–30]. These systems make great progress
toward realizing capable on-device computing for energy-
harvesting systems, but none directly addresses the input
buffer overflows problem that is the focus of Quetzal.

2.2 Understanding Input Buffer Overflows
It is challenging for designers to match the rate of on-device
computing with data collection in energy-harvesting devices,
given their uncertain environments. Even when computa-
tion latency is predictable, total processing time may vary
due to variations in input power and event activity in the
device’s environment (Figure 2a). Input power affects process-
ing time because an energy-harvesting device must collect
its operational energy. Energy collection happens as a device
operates, but if harvestable input power falls below operating
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Figure 2. (a) Processing rate dynamically varies with Input-
Power and Event-Activity. These variations can cause the
device to process inputs slower than the capture rate, missing
newer events. (b) Reducing capture rate still misses a large
number of events.

power, then a device will eventually exhaust its energy. After
exhausting its energy, the device must pause and spend time
collecting enough energy to resume operating and complete
processing the input. As input power varies, energy collec-
tion time varies, and with it, the time to process an input.
Event activity affects processing time because an application
may handle different inputs with different processing tasks.
In the Figure 1 example, an input collected when there is
more activity in the environment is more likely to be passed
on to the ML inference and radio transmission tasks.

End-to-end processing time variations due to input power
and event activity can be substantial. For example, the end-
to-end times for a radio task we evaluated range from 0.8s at
high power to over 50s at low power. If end-to-end process-
ing is slower than capture rate, the device must buffer inputs
for later processing. Buffering is precarious because mem-
ories are small (100s of kB) in common energy-harvesting
devices [3, 30, 81, 86]. Small memories can hold only a few
(e.g., 5–10 in [23]) inputs before the buffer fills. Inputs that ar-
rive to a full buffer are lost; solving this input buffer overflow
problem is therefore the main focus of this work.

2.3 Naive solutions are ineffective at tackling input
buffer overflows

Simple solutions like reducing the capture rate [62] or in-
discriminately degrading tasks [7, 44] do not solve the in-
put buffer overflow problem, as we quantitatively show
in Figure 3. We simulated a solar-powered smart camera
capturing images at 1FPS (like [23]), that discards back-
ground images and detects people using MobileNetv2 [78].
We study two forms of workload degradation. ML degrada-
tion uses LeNet [50] instead of MobileNetv2, which has a
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higher chance of misclassifying images. Radio degradation
sends a single byte indicating an ‘interesting‘ event, instead
of sending an entire image. Section 6 details our setup. The
Ideal bar models an infinite input buffer that never overflows,
only discarding interesting inputs due to ML model misclas-
sifications. NoAdapt (NA) takes no action with a full input
buffer, leading to many lost, interesting inputs. Many exist-
ing energy-harvesting systems [7, 23, 26, 43, 44, 46, 62] are
similarly non-adaptive. Prior works present several policies
for adaptation; we show that none address the IBO problem.
Degrade processing tasks?We evaluated a system that al-
ways degrades both ML and radio tasks (AD). The data show
that always degrading reduces ‘interesting‘ inputs discarded
due to IBOs, but instead loses a lot of ‘interesting‘ inputs to
ML misclassifications while only reporting low-quality data.
Degrade when the input buffer is full? CatNap (CN) [62]
degrades tasks only when the input buffer is full. The data
show that fixed-threshold degradation fails to adapt in time
to avoid input loss, missing a lot of events to IBOs.
Degrade when input power is low? Zygarde [44] and Pro-
tean [7] (PZO) degrade tasks when input power falls below
a fixed threshold, even if the input buffer is fairly empty.
The data shows that adapting to fixed input-power thresh-
olds results in unnecessary task degradations, with many
‘interesting‘ inputs lost to ML misclassifications.
Decrease the capture rate?We implementedNoAdaptwith
capture rate degradation (also like CatNap [62]) and show
different capture periods between 1s and 10s in Figure 2b.
Unsurprisingly, with less frequent captures, the device fails
to even capture a large fraction of interesting data.
The plot also shows that Quetzal reduces interesting inputs
discarded by upto 4.2×. These benefits owe to Quetzal’s
energy-aware SJF scheduling policy, which selects tasks to
run based on estimated end-to-end latencies, and degradation
decisions made based on predicted input buffer overflows.
Paper Overview: Quetzal makes several contributions (Fig-
ure 4). The energy-aware SJF scheduling policy is rooted in
queueing theory, and is the first to consider both execution
time and energy collection time when scheduling tasks. The
key idea is to use (measured) input power and (modeled) pro-
cessing time to find the next shortest job to execute. Section 3
provides an overview of the scheduling policy and its under-
lying theory. Quetzal implements this policy in its scheduler,
which is a runtime software system. A programmer links the
scheduler into their application and the scheduler decides
which job to execute and with what degree of task degrada-
tion. Section 4 describes the scheduler in detail. Quetzal’s
scheduler requires measurements of input power and esti-
mates of job processing time, both of which Quetzal collects
using a novel, yet simple hardware circuit (Section 5).
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Figure 3. Naive solutions discard many interesting inputs.
(a) Some solutions adapt too late or not at all, suffering many
IBOs. (b) Others degrade tasks unnecessarily and suffer many
ML misclassifications. Quetzal dynamically identifies IBO
risk and degrades tasks only when required to avoid IBOs,
discarding fewer interesting inputs and reporting more high-
quality interesting inputs.

Figure 4. Overview of the proposed Quetzal software sys-
tem with enabling hardware module (∗ : our contributions).

3 Modeling Energy-Harvesting Devices
Quetzal develops an energy-aware queueing model of a pe-
riodic energy-harvesting system, using it to compute the ex-
pected service time of a job. Quetzal implements the energy-
aware shortest-job-first (SJF) scheduling policy, selecting
jobs with the shortest expected service time. Quetzal then
uses the service time estimates, alongwith Little’s Law to pre-
dict if the input buffer will overflow during the execution of
the scheduled job. In the event of a predicted overflow, Quet-
zal adapts a job’s behavior using task degradation (Sec. 4).

3.1 Modeling the Input Buffer as a Queue
Quetzal models the input buffer as a queue [33], using this as
a mathematical foundation for predicting input buffer over-
flows. An input arrives in the queue when the device buffers
it in memory, possibly after a low-cost filtering step (e.g.,
discarding unchanged images). The queue thus has an input
arrival rate, 𝜆, which is based on the input period and input
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(a)

Figure 5. An example execution flow for a Quetzal system
with periodic tasks entering data into job queues. When
data exits a queue, Quetzal first runs the Energy-aware SJF
scheduler to select which job to execute. Quetzal then pre-
dicts if the selected job might lead to IBOs, degrading the
degradeable task if an IBO is imminent.

pre-filtering. 𝜆 is higher (lower) during periods of higher
(lower) event activity. The queue has a fixed capacity, limited
by device memory size. The number of queued inputs, N,
must remain below the queue capacity, or else new inputs
are lost. A job is a sequence of tasks that process a queued
input. A task is an application-specific, programmer-defined
part of an application that may process input data or ma-
nipulate peripherals such as radios and sensors. When a job
completes processing an input, that input leaves the queue.
If the input needs additional processing, it can be re-inserted
into the queue by the previous job. Some tasks are degrad-
able, which means that they offer options of different time
and energy cost for how they execute. Figure 5 shows the
jobs and tasks in an example system.

3.2 Modeling End-to-end Service Time
A job has an expected service time, which is the sum of the
service time of each of its constituent tasks weighted by the
probability of executing each task. A task’s service time is
the end-to-end time taken to run that task for an input. A
task’s service time varies with input power, because when
operating power exceeds harvestable power, energy collec-
tion time dominates, but when harvestable power exceeds
operating power, processing time dominates. Equation (1)
models a task’s end-to-end processing time (𝑆e2e) as depen-
dent on harvestable input power (𝑃 in), given a task’s time
(𝑡exe) and energy (𝐸exe) cost. Quetzal uses this end-to-end
service time definition for two things. First, the 𝑆e2e of each
task is a key variable in the energy-aware SJF algorithm de-
scribed in Section 4. Second, 𝑆e2e enables Quetzal to predict
input buffer overflows, which we explain next.

Algorithm 1 Energy-aware SJF Algorithm
1: 𝑃𝑝𝑟𝑒𝑑 ← 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝐼𝑛𝑝𝑢𝑡𝑃𝑜𝑤𝑒𝑟 ()
2: 𝑖𝑛𝑝𝑢𝑡_𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑟𝑎𝑡𝑒 ← 𝜆

3: 𝑚𝑖𝑛_𝑗𝑜𝑏,𝑚𝑖𝑛_𝐸 ← 0
4: for all job_i in jobs do
5: 𝐸 [𝑆 ] ← 0
6: for all 𝑡𝑎𝑠𝑘_𝑖 ← 𝑗𝑜𝑏_𝑖_𝑠𝑡𝑎𝑟𝑡, 𝑗𝑜𝑏_𝑖_𝑒𝑛𝑑 do
7: 𝐸 [𝑆 ]+ = [𝑔𝑒𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑡𝑎𝑠𝑘_𝑖) ∗ 𝑔𝑒𝑡𝑆𝑒2𝑒 (𝑡𝑎𝑠𝑘_𝑖, 𝑃𝑝𝑟𝑒𝑑 ) ]
8: end for
9: if 𝐸 [𝑆 ] <𝑚𝑖𝑛_𝐸 then
10: 𝑚𝑖𝑛_𝐸 ← 𝐸 [𝑆 ]
11: 𝑚𝑖𝑛_𝑗𝑜𝑏 ← 𝑗𝑜𝑏_𝑖
12: end if
13: end for

𝑆e2e =𝑚𝑎𝑥 (𝑡exe, 𝑡 chg) =𝑚𝑎𝑥 (𝑡exe,
𝐸exe
𝑃 in
) =𝑚𝑎𝑥 (𝑡exe,

𝑡exe × 𝑃exe
𝑃 in

)
(1)

3.3 Predicting Input Buffer Overflows
Quetzal directly predicts when an input buffer overflow is
likely by computing the expected number of inputs in the
queue after running a particular job. If the expected number
of inputs in the queue is larger than the queue’s capacity,
an overflow is likely. The system uses Little’s Law (Equa-
tion (2)) to compute the expected occupancy of the queue at
the completion of a scheduled job.

𝐸 [𝑁 ] = 𝜆 × 𝑆𝑒2𝑒 (2)

Computing Little’s Law requires the input arrival rate, 𝜆
and the expected service time for the scheduled job (𝑆e2e).
The scheduler approximates input arrival rate by explicitly
tracking how many of a window of recent inputs were in-
serted into the queue, i.e not discarded. A core contribution
of this work is the use of Quetzal’s energy-aware model of
end-to-end service time to predict queue occupancy.

4 Quetzal System Design
Quetzal avoids input buffer overflows using our novel energy-
aware SJF scheduling combined with its IBO-detection and
reaction engine. Quetzal uses a set of software and hardware
mechanisms to track input arrival rate, service time, input
power, and power consumption.

4.1 Energy-aware SJF Scheduling
Energy-aware SJF (Algorithm 1) schedules the job with the
shortest end-to-end service time (i.e., E[S]). SJF minimizes
the mean wait time for other buffered inputs [33], alleviat-
ing pressure on the input buffer. E[S] for a job varies with
input power and with the tasks active for a particular in-
put; not all tasks processes every input. For example, in
Figure 5, Job1:Task2 will only process inputs that are posi-
tively classified by Job1:Task1. Quetzal predicts E[S] for a job
by summing the expected 𝑆e2e for each task, weighted by its
likelihood of executing. For jobs with the same E[S], Quetzal
chooses the job that processes an older input. The scheduler
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needs several pieces of information to identify the shortest
job: 𝑃 in, 𝑡𝑖𝑒𝑥𝑒 , 𝑃𝑖𝑒𝑥𝑒 , 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛_𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑖 , and input-arrival
rate (𝜆), for each task 𝑖 in the job. Quetzal predicts each based
on measured historical values. For 𝑃 in, Quetzal measures the
instantaneous input power using the hardware mechanism
described in Section 5. For 𝑡exe and 𝑃exe, Quetzal executes
and profiles each task in a separate profiling phase. Quetzal
assumes that each task has a consistent 𝑡exe and 𝑃exe that can
be profiled in advance. To predict a task’s execution proba-
bility, Quetzal tracks the number of times a task executed
over a window of jobs executed overall. The fraction of jobs
that executed that task is Quetzal’s estimate of the task’s
execution probability. To predict 𝜆, the system tracks the
number of times an input was stored in the input buffer from
a previous window of captured inputs.

4.2 IBO-detection and reaction engine
Quetzal predicts imminent input buffer overflows by using
Little’s Law to estimate the number of buffered inputs after
a job’s completion. If the number of buffered inputs after a
shortest job’s completion exceeds the buffer’s capacity, then
the job’s degradable task should be degraded to reduce the
job’s service time. Figure 5 shows this overflow prediction
mechanism in an example. Algorithm 2 shows an algorithmic
version of Quetzal’s IBO-detection and reaction engine.
Reacting to Overflows: Quetzal reacts to imminent over-
flow by degrading a task to reduce the expected 𝑆e2e for the
degradeable task, consequently reducing the job’s E[S]. As
described in Section 5.2, Quetzal expects the programmer
to provide quality-ordered degradation options for each de-
gradeable task. Quetzal then steps down the degradation
option list in the provided order, evaluating if the selected
job avoids imminent IBOs with each option. Quetzal then ex-
ecutes the first degradation option that is predicted to avoid
imminent IBOs. By selecting the highest-quality degradation
option, Quetzal avoids unnecessarily degrading job quality.
If no option removes the imminent IBO risk, Quetzal uses
the option with the lowest 𝑆e2e in order to reduce E[N].
Prediction and Reaction Requirements: Predicting and
reacting to IBOs requires access to predicted 𝑃 in, as well
as {𝑡exe, 𝑃exe, execution_probability} for each degradation op-
tion. We also need the input-arrival rate (𝜆), and the current
occupancy and maximum capacity of the input buffer.

4.3 Mitigating Prediction Error
Quetzal predicts per-job E[S] using historical values for sev-
eral quantities, and can suffer from prediction errors. We mit-
igate these errors using a Proportional-Integral-Derivative
(PID) controller, given its simplicity and low overheads. The
PID controller provides an output that is proportional to
current error (proportional constant 𝐾𝑝 ), the recent history
of error (integral constant 𝐾𝑖 ) and the rate of error change
(derivative constant 𝐾𝑑 ). We measure current error as the
difference between predicted and observed values of E[S]; we

Algorithm 2 IBO-Detection and Reaction Algorithm
1: \* IBO-Detection * \
2: 𝑖𝑛𝑝𝑢𝑡_𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑟𝑎𝑡𝑒 ← 𝜆

3: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 ⊲ # inputs currently stored
4: 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 ⊲ Memory capacity
5: 𝐸 [𝑆 ] ←𝑚𝑖𝑛_𝐸 ⊲ From SJF Calculations
6: if 𝑖𝑛𝑝𝑢𝑡_𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑟𝑎𝑡𝑒 ×𝐸 [𝑆 ] ≥ 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 −𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 then

⊲ Little’s Law
7: 𝐼𝐵𝑂_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

8: \* IBO-Reaction * \
9: 𝐸 [𝑆 ] ← ∑

𝑛𝑜𝑛_𝑑𝑒𝑔_𝑡𝑎𝑠𝑘_𝑆𝑒2𝑒
10: for all 𝑜𝑝𝑡𝑖𝑜𝑛_𝑖 in 𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛_𝑜𝑝𝑡𝑖𝑜𝑛𝑠 do
11: 𝐸 [𝑆 ]_𝑡𝑒𝑚𝑝 = [𝑔𝑒𝑡𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (𝑑𝑒𝑔_𝑡𝑎𝑠𝑘) ∗

𝑔𝑒𝑡𝑆𝑒2𝑒 (𝑜𝑝𝑡𝑖𝑜𝑛_𝑖, 𝑃𝑝𝑟𝑒𝑑 ) ]
12: if 𝑖𝑛𝑝𝑢𝑡_𝑎𝑟𝑟𝑖𝑣𝑎𝑙_𝑟𝑎𝑡𝑒 × (𝐸 [𝑆 ] + 𝐸 [𝑆 ]_𝑡𝑒𝑚𝑝) ≥ 𝑏𝑢𝑓 𝑓 𝑒𝑟_𝑙𝑖𝑚𝑖𝑡 −

𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑜𝑐𝑐𝑢𝑝𝑎𝑛𝑐𝑦 then
13: 𝐼𝐵𝑂_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ← 𝑇𝑟𝑢𝑒

14: else
15: 𝐼𝐵𝑂_𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑 ← 𝐹𝑎𝑙𝑠𝑒

16: < Select this Degradation Option >
17: break
18: end if
19: end for
20: end if

Figure 6. Overview of the proposed Quetzal hardware mod-
ule, which uses four cheap components to compute the 𝑃𝑒𝑥𝑒

𝑃𝑖𝑛
ratio with simple operations, without using expensive divi-
sions.

then add the PID output to future E[S] predictions. If error
is positive, the job executed for longer and the input buffer
might be fuller than we predicted. The device then needs to
be more conservative in future predictions. A positive PID
output inflates future predictions and increases likelihood of
task degradations. If the error is negative, the job finished
sooner than anticipated, and the device might have more
space in the input buffer. The device can therefore afford
maintaining a higher task quality.

5 Quetzal Implementation
Quetzal uses a hardware-software solution to estimate and
track the quantities required in implementing energy-aware
SJF and input buffer overflow prediction. Both the software
and hardware mechanisms are generic, making few assump-
tions of the power system, and operate with very low online
computational and logic cost (i.e. avoiding division), support-
ing even the simplest microcontrollers (MCU).
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5.1 Quetzal’s Hardware-Software Solution
Quetzal’s hardware measures input power (𝑃 in) and operat-
ing power (𝑃exe) at runtime. Directly measuring these quan-
tities in hardware allows Quetzal to account for drops and
component wearout [74]. Quetzal’s software measures task
latency, 𝑡exe, using hardware timers common in low-end
microcontrollers. Quetzal’s power measurement hardware
(described below) makes profiling 𝑃exe simple and accessible
through a simple software interface. Quetzal computes the
𝑃𝑒𝑥𝑒
𝑃𝑖𝑛

ratio to estimate 𝑆e2e for a task, when 𝑃exe ≥ 𝑃 in. Quetzal
uses hardware support because evaluating this ratio hun-
dreds of times per second would incur substantial overhead,
especially in a low-end microcontroller lacking hardware
support for division (e.g. MSP430 [86], ARM M0 [81]).

Algorithm 3 Computing 𝑆e2e using our hardware
1: 𝑉𝐷1 ← (𝑉 in-𝑉 cap)
2: 𝑉𝐷2 ← recorded_voltage[task]
3: if 𝑉𝐷2 ≤ 𝑉𝐷1 then
4: 𝑆e2e ← 𝑡 exe [0]
5: else
6: 𝑑𝑒𝑙𝑡𝑎 ← (𝑉𝐷2 −𝑉𝐷1)
7: 𝑆e2e ← 𝑡 exe [delta AND 0x03] * (1«(delta»3))
8: end if

Hardware for Power Measurement: We provide a new
hardware circuit to simplify evaluating Eq (1). Our circuit
uses four components: two diodes [24], one multiplexer [87]
and one 8-bit ADC [25]. A microcontroller interfaces with
our circuit using two I/O signals, one to select between three
voltage measurements (𝑉 in, 𝑉 cap and 𝑉 exe) and the other to
receive 8-bit ADC measurements. Figure 6 shows our circuit.
Eq (1) requires computing the 𝑡𝑒𝑥𝑒×𝑃𝑒𝑥𝑒

𝑃𝑖𝑛
ratio when 𝑃𝑒𝑥𝑒 ≥ 𝑃𝑖𝑛 .

We leverage semiconductor physics to compute this ratio,
using the Diode Law to convert the division into simple arith-
metic operations. We first reduce 𝑃𝑒𝑥𝑒

𝑃𝑖𝑛
to 𝐼𝑒𝑥𝑒

𝐼𝑖𝑛
by performing

all measurements at the same voltage. Next, we transform the
computation into logarithms: 2𝑙𝑜𝑔2 (

𝐼𝑒𝑥𝑒
𝐼𝑖𝑛
)
= 2𝑙𝑜𝑔2 (𝐼𝑒𝑥𝑒 )−𝑙𝑜𝑔2 (𝐼𝑖𝑛) .

Diode Law:𝑉𝑑 = 𝑘𝑇
𝑞
∗𝑙𝑛 𝐼

𝐼0
then requires our hardware to only

measure the diode voltage𝑉𝑑 , where k, q and T are the Boltz-
mann constant, the elementary charge and the Kelvin tem-
perature respectively. Assuming𝑉𝐷1 and𝑉𝐷2 are the voltages
across diodes D1 and D2 collected using a 8-bit ADC, we can
convert 𝐼𝑒𝑥𝑒

𝐼𝑖𝑛
to 2

𝑞𝑙𝑜𝑔2 (𝑒 )∗𝑉𝐴𝐷𝐶𝑀𝑎𝑥
𝑘𝑇 ∗255 × (𝑉𝐷2−𝑉𝐷1) , where 𝑉𝐴𝐷𝐶𝑀𝑎𝑥

is the maximum ADC voltage. The system measures 𝑉𝐷2
(execution power) during profiling, and 𝑉𝐷1 (input power)
dynamically at run time. Setting𝑉𝐴𝐷𝐶𝑀𝑎𝑥 to 0.6V reduces the
exponent term to 1/8×(𝑉𝐷2−𝑉𝐷1) for temperatures between
25-50 C. We then rewrite the original ratio as: 2𝑎.𝑏 = 2𝑎×20.𝑏 ,
where 𝑎 and 𝑏 are the integer and fractional parts. 𝑎 is simply
(𝑉𝐷2 −𝑉𝐷1) >> 3, giving 2𝑎 = 1 << ((𝑉𝐷2 −𝑉𝐷1) >> 3).
Since the exponent divides by 8, 𝑏 can only take eight possi-
ble values (0, 0.125, ..). We pre-multiply the 𝑡exe for each task
at profile-time with all eight values; the lowest three bits in
(𝑉𝐷2 − 𝑉𝐷1) decide which pre-multiplied 𝑡exe is to be used

for computing E[S]. Computing 𝑡𝑒𝑥𝑒×𝑃𝑒𝑥𝑒
𝑃𝑖𝑛

then requires one
subtraction, one lookup, two shift operations and one multi-
plication. On microcontrollers lacking hardware support for
division, this sequence of operations is over 10× faster. The
above computations are summarized in Algorithm 3.
Tracking task execution_probability and input-arrival
rate: Our software library tracks task execution probability
bymaintaining a bit-vector of size < 𝑡𝑎𝑠𝑘−𝑤𝑖𝑛𝑑𝑜𝑤 >, where
a 1/0 represents that the task did/did not execute for a given
input. This bit-vector is atomically updated for all tasks on
job completion, appending 1s (0s) for tasks that executed (did
not execute). The bit-vectors for all tasks represent a history
over the last < 𝑡𝑎𝑠𝑘−𝑤𝑖𝑛𝑑𝑜𝑤 > completely processed inputs.
Our software library tracks input-arrival rate in a similar
fashion to task execution_probability, using a bit-vector of
size < 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 − 𝑤𝑖𝑛𝑑𝑜𝑤 >, where it appends 1s (0s) for
inputs that are stored (not stored) in the memory-queue. Our
software library maintains a 1-counter for each of these bit-
vectors, which counts the number of 1s in the vector and is
updated only when the bit-vector is modified.
Costs andOverheads:Our software library supports amax-
imum of 32 tasks, with 4 degradation options for each task, re-
sulting in amemory footprint of 2,360 bytes. Our newmodule
predicts the 𝑃𝑒𝑥𝑒

𝑃𝑖𝑛
ratio with ≤ 5.5% error for temperatures be-

tween 25-50 C. At each invocation, Quetzal requires multiple
integer divisions (𝑛𝑢𝑚_𝑡𝑎𝑠𝑘𝑠 + 𝑛𝑢𝑚_𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛_𝑜𝑝𝑡𝑖𝑜𝑛𝑠).
With 10 Quetzal invocations per second and 32 tasks with 4
degradation options, our hardware module reduces Quetzal
overheads on MSP430 [86] from 6.2% to 0.4%, while incur-
ring 0.02% overheads on the Apollo 4 [3]. Our new hardware
module directly reduces the energy cost associated with
computing the 𝑡𝑒𝑥𝑒×𝑃𝑒𝑥𝑒

𝑃𝑖𝑛
ratio. When Quetzal runs on devices

lacking a hardware divider (e.g. MSP430), our module (12
cycles, 3.75nJ) reduces the ratio-computation energy cost
by 92.5% compared with using software division (158 cycles,
49.37nJ). Even when Quetzal runs on devices with a hard-
ware divider (e.g. Apollo 4), our module (5 cycles, 0.16nJ)
reduces the ratio-computation energy cost by 62% compared
with using the native hardware divider (13 cycles, 0.4nJ).

5.2 Programming Model
Quetzal provides a simple programmer interface, where
energy-harvesting applications are written as simple tasks
grouped into jobs. Tasks can coarsely associate with different
processing kernels used in common energy-harvesting de-
vice firmwares; e.g. in [23], ML inference, compression and
radio transmission can all be labelled as a separate task. Some
tasks need to be degradable (e.g. ML and/or radio) to support
reacting to IBOs. For this work, we require the programmer
to combine tasks into a job, where each job has exactly one
degradable task that is responsible for preventing IBOs for
the entire job. A job can have other, non-degradable jobs.
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Degradation Options: The programmer must provide a
quality-ordered list of degradation options that Quetzal can
profile at runtime, and react to IBOs with. Since quality is an
application-specific metric, we assume that the application
developer can reason about quality for different compute
degradation options; Quetzal only requires an ordered list.
Application Requirements for Quetzal: Quetzal targets
applications which cannot suffer reduced capture rates, can
provide quality degradation options (at least for some tasks),
and have dynamically variable end-to-end processing and/or
capture rates (typical for energy-harvesting devices). Quetzal
also relies on consistent 𝑡exe and 𝑃exe for each task; extending
Quetzal to support variable execution costs represents an
interesting future research direction.

6 Methodology
We demonstrated Quetzal’s advantages over several baseline
systems, including systems proposed in prior research (6.1).
We used two rounds of experiments in our evaluation. We
first implemented an end-to-end hardware experiment to
show the benefits of Quetzal’s dynamic adaptations (6.2). We
then used a custom simulator to study a large design space
in a repeatable and reliable manner (6.3).

6.1 Baselines
Non-adaptive:We motivate Quetzal’s dynamic adaptation
with baselines that do not adapt task quality at runtime. A
NoAdapt (NA) system represents a vast majority of prior
energy-harvesting systems [23, 46], running tasks at high-
est available quality. We also study a Always Degrade (AD)
system, which executes tasks at their lowest quality level.
Fixed-threshold-adaptive: We motivate Quetzal’s degra-
dation protocol with baselines that degrade tasks when the
input buffer is filled to a static threshold, expressed as a per-
centage of the input buffer (0-100%). One such example was
proposed in CatNap (CN) [62], which degrades tasks after
the input buffer is full, i.e. threshold=100%. Two prior works
(Zygarde [44],Protean [7]) degrade tasks when input power
falls below static thresholds computed as fixed fractions of
the harvester maximum. We observed that the real-world
input power traces we used in our experiments commonly
stayed below these thresholds, demonstrating a fundamental
flaw in using datasheet maximums (ZGO). Therefore, we also
studied an idealized version (ZGI) of these baselines using
the maximum observed power in an experiment to establish
the static threshold, which is practically unimplementable
given the need for oracular knowledge of the future.
Scheduling Policies:We motivate scaling 𝑆e2e with input
power by studying a Avg. 𝑆𝑒2𝑒 system which uses an average
of past 𝑆e2e measurements for each task in Algorithms 1 and 2.
We also motivated our Energy-aware SJF policy by com-
paring against commonly-used policies: First-Come-First-
Served (FCFS) and Last-Come-First-Served (LCFS).

6.2 Hardware Experiment
We motivate Quetzal with an end-to-end hardware experi-
ment, implementing its Energy-aware SJF and IBO-detection
and reaction engine. We studied a representative person-
detection application (like [23, 46]), where a device identifies
and reports images containing people.
Hardware:We used an Ambiq Apollo 4MCU [3] as themain
MCU for our system. We interfaced this MCU with an ultra-
low-power camera [40] and a LoRa radio [42]. We imple-
mented an energy-harvester circuit using the BQ25504 [88]
and multiple voltage regulators to supply power to our setup,
with a 33mF supercapacitor [5] to store harvested energy.
Figure 7 shows our hardware experiment setup.
Software: We implemented the software pipeline shown
in Figure 1, periodically capturing images at 1 FPS. Each
captured image is compared with the previous image using
pixel-wise differencing, with ‘different‘ images stored into
the memory buffer. Each stored image is then processed
by a pipeline consisting of ML models trained for person-
detection, image compression and radio transmission. The
NoAdapt system processed each stored image in the order
they were captured, while Quetzal employed its Energy-
aware SJF policy. Our Quetzal implementation used the bit-
vectors described in 5.1 to track required quantities.
Time-Varying Environment:We represented the environ-
ment in two dimensions: harvestable power and sensing-
event activity. Using a real energy-harvesting dataset [32],
we emulated a solar harvester with a programmable power
supply [79] as input to the BQ25504, adjusting the power-
supply output according to the dataset trace. We modeled
sensing events in terms of their durations and interarrival
times, where some events are ‘interesting‘ to the application,
with the rest being ‘uninteresting‘. The interarrival period
between events represents inactivity. 6.4 details our appli-
cation. We implemented events using a secondary MCU to
ensure precise repeatability of our experiments, similar to the
setup in [23]. The secondary MCU asserted two input-output
(I/O) pins to indicate the presence and interestingness of an
event. The main system recorded both pins at the time of
image capture. Images captured when the first pin was HIGH
were treated as ‘different‘ and stored in the buffer. Images
captured when the second pin was also HIGH were treated
as ‘interesting‘. The main system used the ML models’ mis-
classification rates to process ‘different‘ inputs, discarding
‘interesting‘ ones at the false negative rate and transmitting
‘uninteresting‘ ones at the false positive rate. Although using
the I/O setup, the main system still executed every scheduled
job to incur their time and energy costs.

6.3 Simulation
We performed a wider range of studies using a custom simu-
lator based on fixed-increment time progression (1ms steps).
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Figure 7. Our end-to-end hardware experiment setup.

Table 1. Experiment Details

Component Values
Compute [HW & Sim.] Ambiq Apollo 4 (Input buffer=10imgs)
Expt. Config. Capture Rate=1FPS, Maximum ‘Interesting‘ Duration: , More

Crowded: 600s, Crowded: 60s, Less Crowded: 20s
App. Details High-Q ML=MobileNetV2 [78], Low-Q ML=LeNet [50], High-Q

Radio=Full JPEG Image, Low-Q Radio=Single Byte
Compute [Sim.] MSP430FR5994 (Input buffer=10imgs)
Expt. Config. Capture Rate=1FPS, Maximum ‘Interesting‘ Duration: 10s
App. Details High-Q ML=Int-16 LeNet, Low-Q ML=Int-8 LeNet, Radio: Same

as Apollo
Quetzal
Params

<task-window>=64, <arrival-window>=256, PID Controller:
𝐾𝑝=5e-6, 𝐾𝑖=1e-6, 𝐾𝑑=1

Our simulations mirrored our hardware experiment, study-
ing a person-detection application. We used the same input
power and event traces in our simulations. We represented
the actual device as a set of tasks characterized by their
latency and energy values, measured on real hardware us-
ing the Saleae Logic Analyzer [75] and Otii Ace Pro [70].
We also modeled an energy storage element, to which we
add harvested energy every simulator time step. We ‘run‘
a task by incrementing the simulation timer by the task’s
latency, and subtracting the task’s energy from the energy
storage. We implemented a just-in-time (JIT) checkpointing
system [8, 9, 47, 61, 64] to support intermittent computing.
Before selecting a job to run, we evaluated any scheduling
policy and degradation-logic pertaining to the simulated
system, incurring its overheads. Our simulated device ran
in parallel to the simulated environment, with the device
‘capturing‘ an event if it overlapped with a sensing task.

6.4 Application Details:
We implemented sensing-event activity using an open-source
video surveillance dataset [67] to randomly draw event du-
rations and interarrival times. Our hardware and simulation
experiments used 100 and 1000 events respectively. The sys-
temswe studied generatedmore interesting inputs the longer
an interesting event lasted. We generated multiple unique
sensing environments using limits on the event durations.
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Figure 8. Hardware experiment showing that Quetzal re-
duces the total interesting inputs discarded compared to the
NoAdapt system across two sensing environments. Quetzal
degrades tasks in response to imminent IBOs, reporting more
interesting inputs.

Per-experiment limits are detailed in Table 1. Our hardware
experiment used one MCU (Ambiq Apollo 4), while our sim-
ulations studied two (Apollo 4 and the MSP430FR5994 [86]).
We used two ML models as high and low-quality options
for the ML-inference task, and sending full images vs sin-
gle bytes as high and low-quality options for the radio task.
Full images can be audited by the receiver, hence represent
higher quality. We trained all ML models using the EuroCity
pedestrian dataset [14]. We used JPEG [65] to compress im-
ages. The Apollo 4 MCU can efficiently compress images; all
systems therefore always compress images before storing in
the input buffer. We modeled the solar harvester as 6 cells of
a commercial product [45]; we study the effect of different
harvester cells in 7.3. We implemented our PID controller as
described in [69], tuning it according to [89].

7 Evaluation
Quetzal’s goal is to reduce the interesting inputs missed
by an energy-harvesting device due to input buffer over-
flows (in our evaluation, ‘interesting‘ inputs contain people).
We show Quetzal meets this goal using two rounds of ex-
periments. First, we show Quetzal outperforms NoAdapt in
an end-to-end hardware experiment (7.1), across two dif-
ferent sensing environments. Second, we present a wider
simulation-based study that shows Quetzal outperforming
multiple baselines in different sensing environments (7.2).
Finally, we study Quetzal’s sensitivity to different system
parameters and schedulers (7.3).

7.1 End-to-end Hardware Experiment
We evaluated Quetzal’s ability to reduce discarded interest-
ing inputs in an end-to-end energy-harvesting experiment
(setup in 6.2). Figure 8a shows that Quetzal reduces discarded
interesting inputs compared to a NoAdapt system by 6.4×
and 5× in two sensing environments. Figure 8b shows that
by reducing input buffer overflows, Quetzal is able to report
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Figure 9. Quetzal reduces the total interesting inputs dis-
carded (% of all interesting inputs) compared to a NoAdapt
baseline. We show an Ideal baseline (∞-memory) for refer-
ence. (b) shows Quetzal reporting a larger number of interest-
ing inputs (norm. to∞-memory) by identifying opportunities
to degrade task quality.

74% and 27% more interesting inputs. In contrast to a NoAd-
apt system, Quetzal dynamically identifies energy-aware
shortest jobs and detects imminent IBOs, degrading tasks in
response. These degradations, represented by the hatched
bars in Figure 8a (False negatives) and Figure 8b (Low-quality
radio packets), allow Quetzal to significantly reduce the total
interesting inputs missed by an energy-harvesting system.

7.2 Advantages of Quetzal
Figures 9 to 11 demonstrate Quetzal’s advantages over sev-
eral baselines, collected using our custom simulator. Our
results show that Quetzal is able to reduce total interesting
inputs discarded by up to 4.2×, compared to NoAdapt.
vs NoAdapt, Always Degrade: Figure 9 contrasts Quetzal
(QZ) with three baselines: NoAdapt (NA) and Always De-
grade (AD) systems which run all tasks at highest and lowest
available quality respectively, and a system with infinite in-
put buffer entries. Across three sensing environments (from
More Crowded to Less), Quetzal discards 2.9×, 3.5× and
4.2× fewer interesting inputs than NoAdapt. Quetzal reduces
the interesting inputs discarded due to just IBOs by 5.7×,
8.1× and 16.6×. Quetzal’s combination of energy-aware SJF
scheduling and dynamic task degradation based on immi-
nent IBOs allows it to outperform NoAdapt. Always Degrade
reduces IBOs but its degraded ML causes a large number
of misclassifications (false negatives). Compared to Always
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Figure 10. (a) Quetzal reduces the % of interesting inputs
discarded compared to prior work [7, 44, 62]. (b) Quetzal
reports a larger number of high-quality interesting inputs
by degrading task quality only when IBOs are imminent.

Degrade, Quetzal discards 2.2×, 3.1× and 4.2× fewer interest-
ing inputs. Further, Always Degrade only reports low-quality
inputs (single-byte), severely degrading application qual-
ity. Quetzal applies task degradation only when IBOs are
imminent, reporting 49.6%, 59.5% and 69.1% of transmitted
interesting inputs at high quality. Finally, Quetzal reports
92%, 96% and 98% of the interesting inputs reported by an
∞-memory baseline, highlighting the impact of Quetzal’s
Energy-aware SJF and IBO-detection and reaction engine.
vs Prior Work: We also implemented several solutions pre-
sented in prior work: CatNap [62] (CN), Protean [7], Zy-
garde [44]. Figure 10 shows that existing systems cannot
tackle the IBO problem as effectively as Quetzal. CatNap
degrades tasks only when the input buffer is 100% full, adapt-
ing too late to avoid IBOs successfully. In contrast, Quetzal
dynamically adapts to imminent IBOs irrespective of the cur-
rent buffer occupancy, discarding 2.2× (4.1×), 3.4× (7.8×) and
4.3× (17.2×) fewer total (IBOs-only) interesting inputs than
CatNap in three sensing environments. Protean/Zygarde re-
act to fixed input-power levels, degrading tasks when the
input power falls below static thresholds. As described in 6.1,
we study two variants: PZO is what the works proposed and
PZI is an idealized, unimplementable version. Our results
show that both variants unnecessarily degrade tasks when
input power crosses the static thresholds, even when no IBOs
are imminent. By dynamically adapting to imminent IBOs,
Quetzal discards 1.9×, 2.6× and 3.1× fewer total interesting
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inputs than even the unrealizable PZI baseline, outperform-
ing PZO by an even larger margin. By degrading tasks only
when required, Quetzal is able to report 1.7×, 1.9× and 2.1×
more high-quality interesting inputs than PZI.
vs Fixed-threshold-adaptive systems:Wemotivate Quet-
zal’s dynamic task degradation with systems that degrade
tasks when the input buffer is filled to a fixed threshold.
Figure 11a shows Quetzal outperforming three different
fixed thresholds (25%, 50%, 75%). Computing a geometric
mean over the three baselines, Quetzal discards 1.15×, 1.67×
and 2.2× fewer total interesting inputs across three sensing
environments respectively. Responding to a fixed buffer-
occupancy threshold leads to unnecessary degradations, in-
creasing ML misclassifications and low-quality radio packets.
Figure 11b shows that Quetzal degrades tasks only when its
engine indicates imminent IBOs, sending (geometric mean)
48%, 62% and 64%more high-quality interesting inputs. Across
the entire range of thresholds, Figure 11c shows that Quet-
zal outperforms fixed-threshold adaptive systems no matter
what threshold is used, as energy-harvesting systems must
adapt only when an IBO is imminent to reduce discarded in-
teresting inputs while maintaining high application quality.

7.3 Sensitivity Analysis
Energy-aware 𝑆e2e: Quetzal predicts per-task 𝑆e2e by scal-
ing 𝑡exe and 𝐸exe values to the current input power. We moti-
vate this scaling by comparing to a Avg. 𝑆𝑒2𝑒 system that uses
an average of previously observed 𝑆e2e values with Quetzal’s
Energy-aware SJF and IBO-detection and reaction engine.
Not scaling 𝑆e2e to input power causes Avg. 𝑆𝑒2𝑒 to incor-
rectly predict IBOs, degrading tasks unnecessarily. Figure 12
shows 𝑆e2e scaling reduces discards interesting inputs by
2.2×, 3.1× and 4.2× compared to using average 𝑆e2e values.
Benefits of Energy-aware SJF: We evaluate Quetzal sys-
tems equipped with different scheduling policies in Figure 12.
Compared to using the common FCFS and LCFS policies,
Energy-aware SJF is able to reduce discarded interesting
inputs by 1.8×, 2.3×, 3× and 1.5×, 2×, 2.7× respectively.
Energy-aware SJF’s advantages are derived from identifying
shortest jobs at the given input power to empty the input
buffer faster. Processing inputs in the same order as they
are captured is also unable to reduce mean waiting times,
and Energy-aware SJF discards 1.4×, 1.8× and 2.6× fewer
interesting inputs. Using Energy-aware SJF allows Quetzalto
reduce the mean waiting time, reducing the risk of the input
buffer being full and subsequent IBOs.
Quetzal is versatile:We show Quetzal’s versatility by im-
plementing several systems on a MSP430 microcontroller in
Figure 13. The baselines either discard a large number of in-
teresting inputs (NoAdapt and CatNap) or overly degrade the
quality of tasks (Always Degrade, fixed-threshold-adaptive,
Protean/Zygarde). Using a MSP430 microcontroller, Quetzal
discards 2.8× fewer interesting inputs than NoAdapt, while
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Figure 11. Quetzal reduces the total interesting inputs dis-
carded compared to fixed-threshold-adaptive systems while
sending a higher number of high-quality interesting inputs.
Quetzal’s advantages hold across the entire range of fixed
thresholds, motivating the need for a system that dynami-
cally adapts to imminent IBOs.

sending 40% more high-quality interesting inputs compared
to the best baseline (fixed-thresholding at 75%).
System Parameters: Figure 14 shows how Quetzal’s re-
sults vary with three configurable system parameters using
Apollo 4: harvester cell count, <arrival-window> and <task-
window> for the ‘More Crowded‘ environment. We selected
parameter values that maximized total interesting events
while maintaining a large amount of high-quality reporting.

8 Related & Future Work
Quetzal relates to energy-harvesting sensors, on-device com-
puting, runtime modeling and dynamic task adaptations.
Energy-HarvestingDevices:Recentwork has investigated
several aspects of energy-harvesting devices [1, 20, 21, 23,
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Figure 12. Quetzal using different scheduling policies, all
equipped with its IBO-detection and reaction engine. Using
the Energy-aware SJF policy allows Quetzal to reduce the
interesting inputs discarded, both due to IBOs (solid) and
False Negatives (hatched).
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Figure 13. (a) Interesting inputs discarded and (b) Radio
packet distribution (Red: interesting, Orange: uninteresting)
for Quetzal and multiple baselines running on a MSP430
microcontroller. Quetzal provides a general solution that is
microcontroller-agnostic.
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Figure 14. Impact of varying several system parameters.
Vertical dashed line shows the valueswe used for our primary
experiments.

26, 35, 46, 66, 76, 91], including reconfigurable power sys-
tems [18, 37, 38], debugging and evaluation tools [15, 36, 63,
83] and real-time clocking systems [19, 39, 49, 71]. Culpeo is
a recent work that exposes power-system properties (ESR)
to software [74]. Quetzal is agnostic of power-system details,
incorporating any ESR-effects in its measurements.

Computing in resource-constrained devices:Recentwork
motivates complex, on-device compute, even on resource-
constrained energy-harvesting devices. Some propose new
energy-minimal architectures [28–30], while others propose
software optimizations for complex processing tasks (e.g.
ML) [31, 53, 54]. Quetzal is directly related to these works, en-
abling complex processing within tight memory constraints.
Intermittent Computing: Prior work studies intermittent
computing, where energy-harvesting devices are designed
to tolerate mid-computational power-failures. These works
presented new programming models and hardware solutions
for intermittent computing [4, 6, 8, 9, 11, 13, 16, 17, 47, 48,
56, 59–61, 64, 72, 73, 83–85, 90]. Quetzal is orthogonal to
intermittent computing, operating on tasks that atomically
complete within a single charge of the energy-storage device.
Runtime Modeling: Quetzal models several quantities for
it’s Energy-aware SJF policy and IBO-detection and reaction
engine. Quetzal could employ existing performance mod-
els [51, 57, 68, 82] and runtime energy prediction [12, 51, 80,
82] to improve it’s predictions. Quetzal could incorporate
intermittent computing costs in it’s E[S] estimates using
existing models [27, 77]. CleanCut [17] models the energy
cost distribution of different paths through a program to
generate intermittent-safe task decompositions. Future ver-
sions of Quetzal could similarly leverage time and power
distributions to support tasks with variable execution costs.
Dynamic Adaptations in Energy-harvesting Devices:
Recent energy-harvesting systems [7, 44, 62] propose dy-
namic scheduling and adaptation; Quetzal outperforms these
systems as they do not target avoiding IBOs. Other works dy-
namically adapt to maintain operating power under a power
cap [10, 41, 52, 92], which we interpret to be the same as the
Protean/Zygarde baseline in our context. One prior work [58]
considers adapting computation quality to input power and
data freshness, as well as opportunistically employing SIMD
computations when older and newer data processing aligns.
However, this work does not adapt processing quality to
input buffer state, and therefore cannot directly address the
IBO challenge. AdaMICA [2] proposes parallel, multicore
computing in energy-harvesting systems; Quetzal assumes
a single-core device in this paper. Multicore parallelism can
provide Quetzal with evenmore powerful adaptation options,
helping it further reduce IBOs.

9 Conclusion
We presented Quetzal, a new system to reduce events missed
due to IBOs, while avoiding unnecessary task degradations.
Quetzal’s Energy-aware SJF policy selected the job with the
lowest end-to-end time at current environmental conditions,
allowing the input buffer to empty more quickly. Quetzal’s
IBO-detection and reaction engine predicts if the selected
job would cause an IBO, and reacts to imminent IBOs by de-
grading the selected job. Our new hardware circuit simplifies
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Quetzal’s computations with cheap components. Our evalu-
ation shows that Quetzal outperforms baselines in different
environments, reducing missed events by up to 4.2×.
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