
Pipestitch: An energy-minimal dataflow architecture with
lightweight threads

Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon Lucia

{nserafin,souradig,harshd}@andrew.cmu.edu beckmann@cs.cmu.edu blucia@andrew.cmu.edu
Carnegie Mellon University

ABSTRACT
Computing at the extreme edge allows systemswith high-resolution

sensors to be pushed well outside the reach of traditional commu-

nication and power delivery, requiring high-performance, high-

energy-efficiency architectures to run complex ML, DSP, image

processing, etc. Recent work has demonstrated the suitability of

CGRAs for energy-minimal computation, but has focused strictly

on energy optimization, neglecting performance. Pipestitch is an

energy-minimal CGRA architecture that adds lightweight hardware
threads to ordered dataflow, exploiting abundant, untapped paral-

lelism in the complex workloads needed to meet the demands of

emerging sensing applications. Pipestitch introduces a program-

ming model, control-flow operator, and synchronization network

to allow lightweight hardware threads to pipeline on the CGRA

fabric. Across 5 important sparse workloads, Pipestitch achieves a

3.49× increase in performance over RipTide, the state-of-the-art, at

a cost of a 1.10× increase in area and a 1.05× increase in energy.

CCS CONCEPTS
• Computer systems organization → Data flow architectures.

ACM Reference Format:
Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann

Brandon Lucia. 2023. Pipestitch: An energy-minimal dataflow architecture

with lightweight threads. In 56th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO ’23), October 28–November 01, 2023, Toronto,
ON, Canada. ACM, New York, NY, USA, 14 pages. https://doi.org/10.1145/

3613424.3614283

1 INTRODUCTION

A
dvances in sensors, batteries, and energy harvesting have

made it possible to deploy sophisticated sensing capability at

the “extreme edge,” i.e., beyond the reach of traditional communica-

tion and power infrastructure [15]. The potential for extreme-edge

sensing is enormous, enabling applications like infrastructure mon-

itoring, wearable health sensing, and chip-scale satellites [9, 54].

Today, most sensors offload processing to the cloud. However,

communicating data off-device consumes orders-of-magnitudemore

energy than sensing itself: communication is the limiting factor on

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0329-4/23/10. . . $15.00

https://doi.org/10.1145/3613424.3614283

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Harvested Power (mW)

0

10

20

30

40

En
d-

to
-e

nd
 ra

te
 (H

z)

Cortex-M33
RipTide
Pipestitch

Figure 1: End-to-end rate (e.g., frames per second) for DNN in-
ference vs. input power in a modeled energy-harvesting sys-
tem. Inference runs on a Cortex-M33, RipTide, or Pipestitch.
Rate depends on both compute time and energy-collection
time. Pipestitch provides the best end-to-end rate with larger
harvested power, since total time becomes dominated by com-
pute time.

lifetime and duty cycle. Prior work has shown that on-device pro-
cessing of sensed data is achievable and provides large benefits [15],

e.g., extending battery lifetime from weeks to years. However, ex-

tensive on-device compute means extreme-edge devices are highly
sensitive to the efficiency of computation.

In particular, sparse computations are important at the extreme

edge. Prior work has shown that many applications (e.g., ML [22]

and DSP [23]) can be made sparse at little loss in accuracy. While

sparsity is generally beneficial to reduce unnecessary work [19, 20,

41], it is absolutely essential with the tight constraints on memory

and energy at the extreme edge [29].

The problem: Prior energy-minimal architectures run sparse appli-
cations too slowly. CPUs waste most of their energy on instruction

fetch, pipeline control, and register-file access [25]. Recent work

has developed energy-minimal dataflow architectures [13, 14, 16]
that target the ultra-low-power regime. These architectures are

coarse-grained reconfigurable arrays (CGRAs): a grid of processing

elements (PEs) connected by an on-chip network. A program’s in-

structions are mapped onto PEs, and values are routed directly from

producers to consumers, eliminating most of the energy wasted in

CPUs.

Energy-minimal architectures have thus far focused exclusively

on improving energy efficiency, ignoring performance. Unfortu-

nately, current energy-minimal designs are too slow on sparse com-

putations to put all available energy to good use. Figure 1 shows an

example, modeling end-to-end rate of an energy-harvesting system

running a sparse DNN [10]. It compares a Cortex-M33; RipTide,

1409

https://doi.org/10.1145/3613424.3614283
https://doi.org/10.1145/3613424.3614283
https://doi.org/10.1145/3613424.3614283
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3613424.3614283&domain=pdf&date_stamp=2023-12-08

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia and Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon

Lucia

the state-of-the-art energy-minimal design; and Pipestitch, our pro-

posed design. When input power is extremely low (a few µW),

end-to-end rate is determined only by energy efficiency (pJ/op).

As input power increases to a few mW (reasonable for existing

energy-harvesting systems [11]), end-to-end rate plateaus as sys-

tems reach their peak performance. Figure 1 shows that RipTide

cannot achieve 30Hz (a standard rate for video processing) on this

workload, regardless of input power — it is just too slow. All of
the energy harvested above its peak (a few hundred µW) is wasted.
Furthermore, the Cortex-M33 CPU is so inefficient that it achieves

no appreciable performance, even at 10mW input power.

Hence, the motivating question for this work is: How can we
improve performance without losing efficiency? Performance

and efficiency are both key for sparse computations on extremely

small power budgets. While blunt hammers like dynamic voltage

and frequency scaling (DVFS) can improve performance, they pay

a steep energy price. Can we improve performance without sacri-

ficing so much efficiency?

Why do prior energy-minimal architectures perform poorly on
sparse applications? Prior energy-minimal architectures are unable

to exploit loop-level parallelism in sparse applications. Sparse ap-

plications often have long carried-dependence chains that limit

parallelism within inner loops, leading to poor utilization. Extract-

ing parallelism within these inner loops requires microarchitectural

techniques like reordering and speculation that are too expensive

for energy-minimal systems. Moreover, it is difficult for a compiler

to recognize potential parallelism across inner-loop nests (i.e., be-

tween outer-loop iterations) in the presence of potentially-aliasing

memory references.

Opportunity: Parallelism is abundant in sparse applications, but it
is not exploited in energy-minimal architectures. Parallelism is abun-

dant in most DSP and ML workloads, even those that are sparse.

The programmer can easily annotate independent work, allow-

ing parallelism to be exploited to achieve significant performance

gains. However, current energy-minimal designs lack architectural

support to exploit this coarse-grained parallelism in the face of

long carried-dependence chains. Loop unrolling (e.g., executing

multiple inner-loop nests in parallel) simply throws area at the

problem, increasing device cost and leakage power, without solving

the underlying issue. Energy-minimal designs require new, efficient
architectural and microarchitectural mechanisms to exploit paral-
lelism in sparse workloads.

Pipestitch: An energy-minimal dataflow architecture with light-
weight threads. Our solution to the above challenges is Pipestitch,
a new energy-minimal architecture that improves performance

by adding lightweight dataflow threads [56] to an energy-minimal

CGRA (Figure 2). Users write Pipestitch programs in C using the

well-known foreach construct to express unordered parallelism

within loop nests [27]. Pipestitch executes threads in parallel by

pipelining loop iterations across a single, shared set of instructions

mapped to its CGRA fabric. Pipestitch fully pipelines inner loops

even in the presence of loop-carried dependences.

Pipestitch exploits thread parallelism while keeping its hard-

ware simple. In particular, Pipestitch maintains ordered-dataflow

T1

T2
T3th

re
ad

t

T1

T2
T3th

re
ad

t

SyncPlane and Dispatch
hardware synchronization

Prior work
conservatively
sequentialized

Pipestitch
aggressively
pipelined

T3 T3

T2

T1

Figure 2: Pipestitch adds architectural and microarchitec-
tural support for pipelining lightweight threads on energy-
minimal CGRAs. Prior state-of-the-art energy-minimal
dataflow architectures conservatively sequentialize threads.
Pipestitch aggressively pipelines them via a new dispatch
instruction and SyncPlane control network.

execution [18, 43, 61, 65], where tokens are kept in-order, elimi-

nating tags. Pipestitch maintains an order across running threads;

but to achieve high throughput on imbalanced sparse workloads,

Pipestitch allows threads to complete out-of-order so that stragglers

do not harm utilization.

Supporting threads on ordered dataflow requires new archi-

tectural and microarchitectural support. Pipestitch introduces the

dispatch gate to launch and synchronize threads. Threads launch

whenever inputs are ready; a new thread can launch every cycle.

To maintain ordering, synchronization between dispatch gates

is required. Pipestitch introduces the SyncPlane, a new, lightweight
control plane connecting relevant PEs to coordinate control signals.

Summary of results: Pipestitch significantly improves performance
and utilization while adding minimal hardware, energy, and program-
mer overhead. We implement a complete Pipestitch hardware sys-

tem, including scalar core andmainmemory, in RTL and Pipestitch’s

compiler in LLVM. We synthesize Pipestitch in a commercial, sub-

28nm process with compiled memories and evaluate it on seven ap-

plications representing both dense and sparse computations. Com-

pared to RipTide, the prior state-of-the-art energy-minimal archi-

tecture, Pipestitch improves performance by 3.49× on average for

threaded apps, by 2.55× on average for all apps, and by up to 3.86×
(on sparse matrix slicing), while increasing area by just 1.10× and

energy/op by just 1.05× on threaded apps and 1.11× for all apps.

Leveraging these results, Figure 1 shows that Pipestitch enables

extreme-edge systems to increase performance and avoid stranded

energy. Pipestitch achieves up to 3× better end-to-end inference

rate, fully utilizing energy up to an input power of 2mW. Moreover,

at low input power, Pipestitch nearly matches the state-of-the-art’s

energy efficiency, showing that its peak performance comes with a

small tax on efficiency.

Contributions. This paper...

1410

Pipestitch: An energy-minimal dataflow architecture with lightweight threads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

• ...motivates and quantifies the need for improved perfor-

mance on sparse workloads at the extreme edge.

• ...identifies the key sources of poor performance in state-of-

the-art energy-minimal architectures.

• ...presents Pipestitch, a spatial-dataflow architecture that

adds efficient support for lightweight threads.

• ...introduces the dispatch control-flow operator to the ISA

to launch and manage threads.

• ...adds the SyncPlane, a lightweight control plane for thread

synchronization.

• ...provides a programming model, compiler, and microar-

chitecture that supports lightweight dataflow threads while

keeping hardware simple and energy-efficient.

• ...evaluates a complete RTL implementation of Pipestitch,

showing that it significantly improves performance while

adding small efficiency and programmability overheads.

Road map. section 2 gives background and motivates the need

for more performance. section 3 describes Pipestitch, and section 4

presents its implementation. section 5 evaluates Pipestitch, and

section 6 concludes.

2 BACKGROUND AND MOTIVATION
Multi-year device deployments at the extreme edge perform a vari-

ety of increasingly complex sensing applications (e.g., wildlife mon-

itoring, chip-scale satellites, etc.) under a very constrained energy

budget [8, 30, 54] . They must harvest energy from their environ-

ment or maximize their lifetime on a battery; energy consumption,

not power consumption, is the key metric [5]. The challenge is to

maximize useful computation within stringent energy constraints.

Compute at the extreme edge must be efficient and flexible. Per-
forming data analysis on-device is key to intelligent and highly

energy-efficient sensor systems. The alternative of communicat-

ing and offloading work off-device has a high energy cost [15].

Flexibility and programmability are critical to adapt to changing

application requirements [14].

Extreme-edge systems must exploit sparsity. Complex DSP and

ML requires sparse formats (e.g., CSR) to fit in small onboard mem-

ories, reduce per-access energy, and eliminate unnecessary compu-

tations [3, 19, 21, 29]. Efficient support for sparse computation is
essential for applications at the extreme edge.

Existing architectures are too inefficient, too inflexible, or too slow.
Von Neumann architectures lack the energy efficiency required

for on-device processing at the extreme edge, wasting up to 90%

of their energy on data movement, instruction fetch, and pipeline

control [13, 16, 25]. Alternatively, application-specific integrated

circuits (ASICs) sacrifice programmability for high energy effi-

ciency and performance. However, specialization risks obsolescence

as sensing applications evolve over a years-long sensor deploy-

ment [49]. Accelerators for sparse tensor algebra [24, 38, 39, 41, 46,

51, 66] achieve high performance, but at a cost in flexibility, and

the microarchitectural techniques (such as large CAMs, memory re-

ordering, and frequent reconfiguration) are too energy-intensive for

the extreme edge. Energy-minimal architectures like RipTide [14]

provide efficiency and flexibility, but are slow on sparse workloads.

To enable sparse workloads at the extreme edge, a balance of flexi-

bility, energy efficiency, and performance is required.

2.1 Architecture for the extreme edge
CGRAs balance energy efficiency and programmability. A consid-

erable body of work has shown coarse-grained reconfigurable array
(CGRA) architectures [2, 4, 6, 7, 12, 17, 18, 26, 31–37, 40, 42, 43, 45,

47, 48, 50, 52, 53, 55, 57, 58, 60, 62] to be an excellent choice for fast,

efficient, and programmable computing. CGRAs spatially distribute
compute across a grid of processing elements (PEs) that execute

operations and communicate intermediate values via a network

on-chip (NoC) between PEs. This spatial distribution allows CGRAs

to exploit instruction and data locality far more efficiently than von

Neumann architectures, effectively eliminating overheads such as

instruction fetch/decode, register-file access, and switching activity

from a shared pipeline [13]. Unlike ASICs, CGRAs also retain flexi-

bility, and can execute a wide range of code written in high-level

languages. To run code on the CGRA, a compiler extracts a dataflow

graph (DFG), maps operations onto PEs, and configures the NoC to

connect PEs.

No CGRA currently provides the right blend of speed, efficiency, and
programmability for sparse computation at the extreme edge. High-
performance CGRAs like SPU [7] and Fifer [35] do not focus on the

energy efficiency required at the extreme edge. Revel [62] seeks

a more balanced blend of performance and efficiency; however,

its hybrid design requires tagged-token matching and reordering,

which is too costly for the extreme edge. HyCUBE [26, 59] and

Ultra-elastic CGRAs [55] achieve a mix of performance and energy

efficiency closer to what is required at the extreme-edge, but they

still consume toomuch energy, and are restricted in the applications

they can support. HyCUBE only supports affine loops, while UE-

CGRA only supports cross-iteration dependences in singly-nested

irregular loops.

Energy-minimal dataflow architectures enable extreme-edge com-
puting. Prior work on energy-minimal dataflow architectures [13, 14,
16] demonstrated that energy-focused CGRA designs and compila-

tion techniques achieve near-ASIC energy efficiency on programs

written in C. The state-of-the-art, RipTide, achieves high efficiency

by offloading entire kernels onto the CGRA fabric, which eliminates

an Amdahl bottleneck in prior CGRA designs that only target inner

loops. RipTide minimizes energy via four key techniques: (i) map-

ping one operation to each PE to minimize switching, (ii) disallow-
ing re-ordering to avoid tagging values, (iii) eliminating buffers in

the NoC, and (iv) reusing NoC routers to implement control flow.

RipTide’s compiler supports arbitrary control flow and memory

access, including nested and irregular loops. It maps high-level C to

RipTide’s CGRA fabric, inserting operators to implement arbitrary

control flow while keeping tokens in order through diverging paths,

loops, and memory accesses. However, RipTide is unable to execute

sparse applications quickly.

2.2 Drawbacks of energy-minimal dataflow
While prior energy-minimal dataflow architectures demonstrate

that sophisticated computing at the extreme edge is feasible, they

neglect performance, which is a limiting factor for large, sparse

1411

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia and Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon

Lucia

0 10 20 30 40
Rate (fps)

0

1

2

3

4

5

6

Lif
et

im
e

(y
ea

rs
)

Cortex-M33
RipTide
Pipestitch

RipTide
performance
wall

Figure 3: Device lifetime on aD-cell battery vs. DNN inference
rate for a Cortex-M33, RipTide, and Pipestitch. Pipestitch
can achieve much higher inference rates than RipTide, while
maintaining useful lifetimes at performance targets that
both can reach.

applications. There is an opportunity to significantly increase appli-

cation value by increasing performance on sparse computations.

The need for speed. We saw in section 1 that poor performance on

sparse computation leaves energy stranded in an energy-harvesting

deployment. Similar issues affect lifetime on battery-powered de-

ployments. Figure 3 shows device lifetime while powered by a

D-cell battery for the same workload and systems as Figure 1. To

meet the most stringent lifetime requirements, a singular focus

on energy-efficiency is required. RipTide lasts nearly 5 years at 10

fps because of its energy-minimal design (see left side of Figure 1).

However, this comes at the expense of performance: RipTide is

unable to achieve high framerate. In contrast, Pipestitch achieves

much higher framerates and still supports multi-year deployments.

Performance bottlenecks in sparse computations. Sparse compu-

tation kernels frequently require irregular loops to traverse com-

pressed representations. Figure 5 (a) shows the loop nest for count-

ing non-zeros in a map, a representative sparse computation. While

the outer loop is regular (i.e., each iteration is independent from

all others), the inner loop has data-dependent control, as it must

wait for the next value of p. RipTide supports this loop nest, but

will conservatively sequentialize iterations of the outer loop, leading
to poor utilization of the inner-loop PEs and poor performance. By

contrast, Pipestitch will execute independent outer-loop iterations

as threads and aggressively pipeline them through inner-loop PEs,

improving performance and utilization (Figure 2 and Figure 5 (b,c)).

What about DVFS?. DVFS is a well established technique for trad-
ing performance and energy, but using it to improve performance

comes at a great cost in energy. To a first order, energy degrades

quadratically with performance, as 𝑃 ∝ 𝑉 2 𝑓 and 𝑉 ∝ 𝑓 [63]. Any

major scaling in performance incurs a prohibitive energy cost.

Pipestitch improves performance by reducing the number of

cycles required to do the same work, independent of voltage and

frequency. DVFS is a complementary technique to Pipestitch. Fig-

ure 4 shows a cartoon of DVFS applied to Pipestitch and RipTide.

If performance is not a primary concern, Pipestitch can reduce its

clock frequency while continuing to match RipTide’s performance.

Depending on the application and VLSI technology, DVFS could

Rate

Fr
eq

ue
nc

y

RipTide
Pipestitch

Energy

Lower freq,
same rate

Lower voltage,
save energy

Figure 4: Applying DVFS to Pipestitch could save energy
when performance is not critical. Because Pipestitch does
the same work in fewer cycles, it is able to run at a lower
clock frequency at iso-performance. This allows voltage to
be scaled down, which, as this cartoon shows, could result in
significant energy savings.

allow Pipestitch to run at lower energy than RipTide while main-

taining the same performance. (In practice, technology limits how

far DVFS can be pushed [55].) Conversely, increasing RipTide’s

frequency and voltage to match Pipestitch’s performance severely

degrades energy efficiency.

Pipestitch provides the right balance between generality, perfor-
mance, and energy efficiency. Flexibility, performance, and energy

efficiency are at odds; no prior system achieves the right balance

for the extreme edge. Pipestitch is the only architecture that is

flexible, performant, and energy-efficient on all the workloads im-

portant at the extreme edge. Pipestitch is a new point on the Pareto

frontier that achieves (i) far higher performance than prior energy-

minimal architectures and (ii) far higher energy efficiency than

prior high-performance architectures. Pipestitch thus sheds light

on the fundamental tradeoffs between energy and performance.

3 PIPESTITCH OVERVIEW
Pipestitch is an energy-minimal, ordered-dataflow architecture that

achieves high performance in sparse applications by adding light-

weight dataflow threads to aggressively pipeline independent oper-

ations. Pipestitch exposes threads to the programmer through the

foreach construct, asking the programmer to specify which loops

are parallelizable (Figure 5 (a)). Each iteration of a foreach loop

becomes a thread, with the loop body being pipelined (Figure 5 (b)).

Pipestitch exposes threads to the hardware with a new dataflow

synchronization primitive, called the dispatch operator, which en-

sures correct threaded ordered-dataflow execution (Figure 5 (b)).

To preserve token ordering, dispatch operators synchronize over

the SyncPlane, a lightweight control plane. Threads are pipelined
through the dataflow graph mapped onto a single collection of

PEs, with operations from different threads executing in parallel on

different PEs, improving throughput and utilization (Figure 5 (b,c)).

The dispatch operator. Pipestitch’s dispatch operator (Figure 6)
spawns and continues threads while maintaining ordering. It selects

1412

Pipestitch: An energy-minimal dataflow architecture with lightweight threads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

p c

LD

!=0

LD

+1

Tc

Tp

Disp
atc

h
SyncPlane

T1

T2

T3 T3

T4

T5

T6 T6

b) while DFG and pipelining

foreach i = 0..N:
 p = map[i], c = 0

while p != NULL:
if p.val: c++

 p = p->next
 ...

a) Loop nest

p c

LD

!=0

LD

+1Tc

Tp

T1

T2

T3 T3

T4
T5

T6 T6

c) Mapping and execution

Figure 5: Pipestitch overview. (a) Pipestitch compiles loop-
nests with independent outer-loop iterations, (b) pipelining
independent foreach iterations as threads on the DFG. (c)
Pipestitch maps and executes these DFGs on a CGRA fabric,
with threads synchronizing over the SyncPlane, a lightweight
control plane.

C

A

D

BS C

D

A

D T Op

A B [...]

if init(): out = A
elif D: out = B

if spawn(): out = S
elif cont(): out = C RipTide

Pipestitch

if D: out = A out = Op(A, B, ...)

Dispatch Carry Steer Other

Figure 6: Pipestitch ISA. Pipestitch adds the dispatch op-
erator while continuing to support all RipTide operators.
dispatch and carry operators both sit at the top of a loop
body handling loop-carried dependencies, but dispatch op-
erators are able to manage many threads in the loop body,
while carry operators block all but one. steer operators for-
ward or drop a token based on a decider. All other operators
(e.g., add) are represented by a bubble labelled with the op.

between thread-spawn tokens (from the outer loop) and thread-

continuation tokens (from the backedge in the inner loop). A col-

lection of dispatch operators sits at the top of the inner loop, with

one dispatch for each input into the loop body (p and c in Figure 5

(b)). The dispatches coordinate to either (i) inject a complete set
of input tokens from the outer loop to spawn a new thread (i.e.,

in Figure 5 (a), map[i] and 0 are inputs for p and c, respectively);
or (ii) inject a complete set of tokens from the inner loop, carrying

an existing thread’s dependences around another iteration of the

loop (the backedges to p and c in Figure 5 (b)).

Ordering threads’ tokens through dispatch operators requires

synchronization. Ordering is challenging because different threads’

executions of a loop body may follow control-flow paths of different

lengths. For correct execution, tokens from different threads must

propagate around the loop in the same order that threads were

spawned: while running, threads always stay in order. To eliminate

stragglers, threads can terminate out-of-order.

The SyncPlane. dispatch operators maintain thread ordering by

communicating over the SyncPlane, a lightweight synchronization

network (Figure 5 (b,c)). The SyncPlane allows all dispatch opera-

tors to accept either a complete set of thread-continuation tokens

from the inner loop or a complete set of thread-spawn tokens from

the outer loop, even though a set of tokens may not all arrive on the

same cycle. The SyncPlane conveys a small set of single-bit control

signals between all dispatch operators, and contains reduction

trees to give each dispatch a global view of the thread inputs.

foreach i = 0..N:
 p = map[i], c = 0

 while p != NULL:
 if p.val: c++
 p = p->next

 Z[i] = c

dp dc

LD
!=0

LD +1

Tc

Tp

di

Ti

Inputs

Con Con Con

map [i] i 0
Spawn

STZ

……

Figure 7: The Pipestitch software stack. The programmer uses
foreach to mark independent work. The compiler generates
a threaded DFG for the foreach loop, inserting dispatches to
manage and pipeline threads. (This DFG is partially simpli-
fied to highlight the inner loop; e.g., F steers, abbreviated by
“...”, would route live-out values to the store.) dispatches
are inserted for all carried dependences and invariants of
the inner loop: e.g., p and c, and for the invariant i. Each
dispatch receives a token from the outer loop, representing
the thread Spawn point, and a backedge from the inner loop,
representing thread continuation (Con).

Pipestitch’s compiler. Finally, Pipestitch provides a compiler that,

given a program with independent work marked with foreach,
produces a DFG containing appropriately-placed dispatch opera-

tors to allow safe pipelining (see Figure 7). The input set of a thread
is the set of all values unique to the thread. A dispatch gate is

inserted for each value in the input set, and those values are car-

ried through the loop until thread termination. The spawn point
of a thread is the interface between the outer and inner loops, and

is a cut through the edges connected to the spawn inputs of the

dispatch operators making up the input set.

4 PIPESTITCH IMPLEMENTATION
Pipestitch supports lightweight threads by bringing together a

new ISA for thread control, microarchitecture implementing effi-

cient thread pipelining, and a simple, intuitive programming model

1413

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia and Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon

Lucia

for parallelizing code. The programmer writes foreach loops and
Pipestitch compiles them to lightweight threads that run using the

same mapping of a loop-body onto a single collection of PEs. The

dispatch operator handles thread spawn and ordering. The Sync-

Plane enables lightweight synchronization between all dispatch
gates to ensure that tokens remain in order even as threads launch,

continue, and terminate. This provides correct threaded execution

without the need for tags.

4.1 The Pipestitch Programming Model
Pipestitch asks the programmer to explicitly mark independent

parallel work. In the vein of other parallel programming models

(e.g., OpenMP [1]), the programmer marks outer loops containing

independent loop nests with a foreach keyword. Pipestitch com-

piles and executes the program with each iteration of the foreach
loop executing with sequential semantics as an independent thread.

A loop with dependencies that is incorrectly marked foreach will

execute with undefined semantics.

4.2 The Pipestitch Threading Model
Each independent iteration of a marked foreach loop in Pipestitch

will be executed as a thread. A thread’s live variables are implicitly

defined as the set of values used during the execution of the thread’s

loop body. The initial values of a thread’s live variables flow into

the thread when the thread spawns at the spawn point in the DFG.

Updated values of a thread’s live variables may also flow back to

the thread’s spawn point via loop-carried dependences (i.e., control

backedges), allowing inner loops to be irregular (Figure 7). Each

thread receives its own live variables. A threadmay update any of its

live variables in each iteration, and the live variables are a thread’s

only state. They are maintained as the flow of values between

operations that manipulate these variables, living only in PE buffers.

Pipestitch can spawn a new thread when the initial value of each

of the thread’s live variables is available at the spawn point. If a

new thread’s initial values are available every cycle, Pipestitch can

spawn a new thread on every cycle. A thread terminates when no

more values flow through the DFG representing its computation.

4.3 Executing Lightweight Dataflow Threads
Pipestitch pipelines a thread’s work through the single set of PEs

onto which the compiler mapped the thread’s loop body (Figure 8

(b)), eliminating pipeline bubbles that would otherwise be present

(Figure 8 (a)). During execution, each thread’s tokens flow from

the top of the thread body (from the spawn point for a new thread,

or via a backedge for an existing thread) and traverse through the

mapped PEs. After filling the pipeline of PEs with different threads’

operations, the system runs fully pipelined, with operations from

different threads firing on consecutive cycles in each PE.

4.4 Synchronized Threads and Ordering
Pipestitch adds the dispatch operator, a new ISA operator that

spawns and continues threads while maintaining inter-thread order-

ing (Figure 6). Each live variable (initially the input set) in a thread

p c

LD

!=0

LD

+1

Tc

Tp T1

T6T5T4T3T2

T6T5T4T3T2
p

c

LD LD

!=0

+1

Tc

Tp

Cyc
. 1

Cyc
. 6 Cycle 6

Cyc
. 7

Cyc
. 8

Cyc
. 5

Cyc
. 4

Cyc
. 3

Cyc
. 2

T1

T1

T1

T1

T1

T1

T1

T1

T1

T1

T2

T2

T3

T3

T4

T4

T5

T5

T6

T6

(a) Without Pipestitch

p

c

LD LD

!=0

+1

Tc

Tp

Cyc
. 1

Cyc
. 6

Cycle 6Cyc
. 7

Cyc
. 8

Cyc
. 5

Cyc
. 4

Cyc
. 3

Cyc
. 2

T1

T1

T1

T1

T1

T1

T1

T2

T2

T2

T2

T2

T2

T3

T3

T3

T3

T3

T4

T4

T4

T4

T5

T5

T5

T6

T6

T1

T1

T2

T2

T3

T4

T5

T6

T1

T1

T1

T2

T2

T3

T4

T5

T6

p c

LD

!=0

LD

+1

Tc

Tp T1

T2

T3 T3

T4

T5

T6 T6

(b) With Pipestitch

Figure 8: Execution of threads on a DFG with and without
Pipestitch. (a) Without Pipestitch, threads (represented by
circles) are conservatively blocked at the head of the inner
loop. Only one thread executes in the inner loop at any time,
leading other threads to wait at the top, causing poor uti-
lization and performance. (b) With Pipestitch, independent
threads are unblocked and pipelined through the inner loop,
leading to high utilization and performance.

corresponds to a single dispatch operator (Figure 7). Through-

out execution, dispatch operators select between spawn and con-

tinuation tokens to keep the pipeline full while maintaining or-

dered dataflow.

Single-input threads. A single-input thread will have a single

dispatch operator for that input. Without multiple live variables

to synchronize, the dispatch can always select either a spawn

token or a continuation token without breaking ordering. Since

each thread is independent and each thread’s only state is that

single live variable, any interleaving of spawn and continuation

tokens at the dispatch will provide correct execution. In this case,

the continuation token is arbitrarily preferred.

Multi-input threads. A thread with𝑛 inputs will have𝑛 dispatch
operators, one for each input. With multiple live variables involved,

synchronization is required. Spawn and continuation tokens are

each ordered: all of thread 1’s spawn tokens will arrive before any of

thread 2’s spawn tokens, and vice versa. However, spawn and contin-
uation tokens are not synchronized: nothing can be said about when

thread 1’s continuation tokens will arrive in relation to when thread

1414

Pipestitch: An energy-minimal dataflow architecture with lightweight threads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Ou
t o
f

ord
era)

Wi
tho

ut

Sy
nc
pla

ne

In
ord

er

b)
Wi
th

Sy
nc
pla

ne

Cycle 1 Cycle 2 Cycle 3 Cycle 4

Co
n

Sp
n

Co
n

Sp
n

p c

p c

p c

p c

p c

p c

p c

p c

T1T1

T1 T1

T1T1

T2

T2

T2 T2

T2

T3

T3 T3

T3

T3

T3 T3 T3

T2

T3

T3

T2

T2

T2T2

Co
n

Sp
n

Co
n

Sp
n

Co
n

Sp
n

Co
n

Sp
n

Co
n

Sp
n

Co
n

Sp
n

Figure 9: Pipestitch’s dispatch operator controls thread
launch and execution by selecting between thread-spawn
and thread-continuation tokens, and provides synchroniza-
tion to ensure ordering is preserved. If carried-dependence
chains in the thread body have different lengths, spawn and
continuation tokens can arrive at different times (yellow to-
kens on cycles 2 and 4). (a) If dispatch operators greedily
accept tokens as they arrive, ordering violations can occur.
(b) Pipestitch ensures correct execution by synchronizing
among dispatch operators over the SyncPlane, allowing to-
kens to be held until they can be safely accepted.

2’s spawn tokens arrive. Furthermore, with carried-dependence

chains in the DFG having different lengths, it is possible that con-

tinuation tokens arrive on different cycles. Figure 9 shows this, and

(a) shows an ordering violation (and incorrect execution) that can

occur if dispatch greedily accepts any available tokens. Thread

2’s p continuation token arrives at the corresponding dispatch on

cycle 2, but its c continuation token does not arrive until cycle 4.

Meanwhile, thread 3’s spawn tokens for both p and c arrive at the

corresponding dispatches on cycle 3. The greedy dispatches will
accept thread 2’s p continuation token on cycle 2, both of thread 3’s

spawn tokens on cycle 3, and thread 2’s c continuation token on

cycle 4. The dispatch operators have different output orderings,
leading to incorrect execution.

To overcome this, dispatch operatorsmust synchronize, making

sure that a complete set of thread inputs are accepted at the same

time. Figure 9 (b) shows this. On cycle 2, thread 2’s p continuation

token will be held, because the dispatch gate is aware that the

corresponding continuation token for c is not available. The token

will continue to be held through cycle 3 as the corresponding c
token is still not available. Since both of thread 3’s spawn tokens

are available, those tokens will be accepted. On cycle 4, thread

2’s c continuation token becomes available, so both of thread 2’s

tokens are accepted. This leaves the dispatch operators agreeing

on the ordering of threads, allowing correct execution. If both a

complete set of spawn tokens and a complete set of continuation

tokens is available, it is inconsequential which is accepted, and the

continuation set is arbitrarily preferred.

Avoiding deadlock. The number of threads that run in paral-

lel is limited by the total number of buffers in the PEs executing

the threads. If accepting a set of spawn tokens would fill the last

buffers in the thread body, deadlock would occur because the con-

tinuation tokens cannot be accepted by the dispatch gates. To

avoid this, we draw from bubble flow control [44], and ensure

that dispatch operators all have two available buffer slots before

accepting a new spawn token.

Token-selection logic. Putting together the conditions for ensur-
ing ordering and avoiding deadlock, Figure 10 shows the logic for

dispatch token selection.

1 if AND(valid(cont)) and not OR(full(out))
2 push(cont)
3 else if AND(valid(spawn)) and AND(twoSlots(out))
4 push(spawn)

Figure 10: dispatch token-selection logic. The cont token is
selected if all dispatch operators have that token available
and at least one free slot in their output buffers. The spawn
token is selected if all dispatch operators have that token
available and at least two free slots in their output buffers.
If both tokens could be selected, Pipestitch prefers the cont
token.

PE PE PE

PE PE PE

PE PE PE

PE PE PE

PE

PE

PE

PE

R

R

R R

R R

R R

R

Combinational
data NoC SyncPlane

Input
buffers

Output buffer
(for CF and
MEM only)

FU

μCore

PE

PE PE PE PE

SyncPlane reduction tree

Figure 11: Pipestitch microarchitecture. Pipestitch is a fab-
ric of heterogeneous PEs connected by a combinational,
circuit-switched NoC for communicating data, and a combi-
national SyncPlane for communicating control signals be-
tween dispatch operators. PEs buffer tokens at their inputs,
and some PE types additionally buffer their outputs. The
SyncPlane is a reduction tree that connects all control-flow
PEs. For simplicity, heterogeneity of PEs is not shown.

4.5 Pipestitch Microarchitecture
Figure 11 shows the microarchitecture of Pipestitch. It leverages the

existing RipTide microarchitecture to allow fair comparison, but is

not specifically tied to it. The fabric is an array of heterogeneous

PEs, a statically-routed, circuit-switched, combinational data NoC,

and a combinational SyncPlane for synchronization between dis-

patch gates. PEs buffer tokens at their inputs, with a buffer for each

input. As will be discussed, control-flow (CF) and memory PEs also

have an output buffer. The PE is divided into a common µCore for

control and interfacing with the NoC, and a PE-specific functional

unit (FU). Routers are combinational switches with additional logic

1415

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia and Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon

Lucia

to manipulate the routing table for control-flow-in-NoC. The Sync-

Plane carries and reduces control signals between all CF PEs (to

which dispatch operators are mapped).

4.6 Synchronization with the SyncPlane
To communicate control signals between dispatch operators, Pipestitch
uses a secondary control plane, the SyncPlane. It carries each of the

one-bit control signals used in thread synchronization (Figure 10)

from the dispatch gates to a reduction tree, returning the reduc-

tions to each dispatch. Implementing this as a secondary plane

with built-in reductions allows inter-dispatch synchronization to

conserve resources. The alternatives of using wide data links to

carry one-bit control signals, or adding reduction nodes to the DFG,

would increase mapping time and consume valuable links and PEs.

4.7 Reducing Pipeline Stalls
Pipeline stalls across thread operations are a major performance

consideration in Pipestitch. To maximize throughput, Pipestitch

must keep threads running smoothly through the pipeline with

a minimum of stalls. Because Pipestitch does not re-order tokens

across threads, a stall in any thread will delay all threads. Sources of

stalls include transient effects, such as memory-bank conflicts, and

throughput mismatches due to split-join subgraphs and carried-

dependence chains of different lengths in the DFG.

To minimize the impact of stalls, Pipestitch buffers tokens at

the input of PEs (destination buffering). While buffering tokens at

the output (source buffering) requires only a single copy of each

token, it leads to stalls if consumers do not fire at the same time or if

consumers do not have all input tokens available. This is especially

problematic for imbalanced split-joins. Figure 12 (a) shows that

source buffering on an imbalanced split-join results in unavoidable

stalls, reducing throughput. Figure 12 (b) shows that destination

buffering eliminates stalls and achieves full throughput, at the cost

of some additional buffering for high fan-in operations.

There are two exceptions. First, memory PEs initiate loads and

then must wait some cycles before data is returned. If a downstream

operator exerts backpressure after the load initiates, the PE must

have somewhere to put the data when it comes back from memory,

so memory PEs are provisioned output buffers. This extra sequen-

tial stage increases latency, so these output buffers are bypassed if

downstream is not exerting backpressure. Second, dispatch oper-

ators need to reason about the state of their output buffer as part

of their ordering-preservation logic. As an implementation detail,

reasoning about the state of another PE’s input buffer would be

infeasible in our current microarchitecture, so we provision each

CF PE with an output buffer. We also observe that provisioning

this extra buffering helps performance, as CF PEs are particularly

sensitive to stalls.

4.8 Compiling for Pipestitch
Pipestitch compiles applications written in C to a DFG by extending

RipTide’s compiler to support foreach and dispatch. To parallelize
foreach loops, Pipestitch adds a compiler pass that recognizes the

foreach loop nest and inserts dispatch operators in the DFG.

Inserting dispatch. dispatch operators are added for all thread
tokens generated in the outer loop that are live in a dataflow through

p

!=0

Tp

p

!=0

Tp

T1

T1

T1

T1

T2

T2

Cyc
. 1

Cyc
. 4

Cyc
. 3

Cyc
. 2

T2

(a) Source buffering

p

!=0

Tp
T1

T3

T3

T4p

!=0

Tp

T1

T1

T1

T2

T2

T2

Cyc
. 1

Cyc
. 4

Cyc
. 3

Cyc
. 2

T2

T2

T3

T3

(b) Destination buffering

Figure 12: Source buffering limits throughput in imbalanced
split joins. (a) With source buffering, an operator that does
not have all of its input tokens available must stall upstream
to keep the token from being dropped. This leads to manda-
tory stalls in an imbalanced split join. (b) With destination
buffering, the operator can stash the inputs that are ready,
freeing upstream to continue execution, and achieving full
throughput.

the inner loop, where there is potential for ordering violations when
decoupling and pipelining outer-loop iterations (and their inner-

loop instances). These values come in the form of loop-carried

dependences and loop invariants of the inner loop, which we define

as the thread’s input set.

The compiler first inserts dispatch operators into the DFG for

loop-carried dependences of the inner loop. The initial value of

a carried dependence is set to the spawn input of the dispatch
operator in the DFG. The continue input is set to the backedge

in the DFG that produces the carried value in the inner loop. Fig-

ure 7 shows this in practice; dispatches pd and cd are inserted for

carried dependences p and c. pd has its spawn input set to map[i]
and its continue input to the backedge arriving from Tp. cd is

configured identically.

The compiler handles loop invariants similarly, inserting an addi-

tional dispatch and steer to reproduce the token for the lifetime

of the thread. The invariant token and the loop exit condition serve

as inputs to this steer, which then feeds the continue input of the

dispatch in the DFG. Figure 7 demonstrates this transformation;

dispatch id is inserted for the loop invariant i. In this example, i
simply passes in a dataflow through the inner loop so the thread

can use it to execute Z[i] = c afterwards. id’s spawn input is set
to i and its continue input is set to the backedge arriving from Ti,
inserted specifically for id.

Increasing token storage. To provide enough storage for live val-

ues, Pipestitch maps all control-flow operators to PEs, rather than

routers, so that each operator is allocated token storage.

Selectively enabling dispatch. Loops with initiation interval

(II) of 1 perform perfectly, eliminating any potential benefit from

threading. Invoking threading in this case will force control flow to

map to PEs, reducing array efficiency with no performance gain.

We adopt a heuristic of only invoking dispatch pipelining if inner-
loop II > 1. Control-flow executing combinationally in routers does

not increase II, so II is the number of non-control-flow operators in

the longest cycle of the inner loop.

1416

Pipestitch: An energy-minimal dataflow architecture with lightweight threads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

This heuristic is effective, but it is not perfect: a program with

an inner-loop II of 1 but a poorly-balanced outer loop could also

benefit from threading. Threading forces control flow to PEs, which

actually benefits this scenario; it decouples unbalanced paths in

the outer loop and increases inner-loop II. Threads would be the

better option to gain performance now that the inner-loop II > 1.

We do not consider this observation for our heuristic and leave this

optimization for future work.

Mapping. CGRA mapping is a hard problem [13, 14, 28, 64], but

RipTide finds a SAT-based solution fast while producing sufficient

mapping quality. We adopt RipTide’s solution and extend it with

an override to keep CF on PEs. Additionally, we add rules to keep

CF operators on PEs if they follow bypassing memory operators,

even if CF in NoC is requested. Doing so avoids a combinational

loop between bypass and CF in NoC.

5 EVALUATION
We evaluate a full implementation of Pipestitch with a compiler

and RTL hardware description. We find that Pipestitch substantially

improves performance with small energy overhead.

5.1 Methodology
Pipestitch is implemented entirely in RTL, building on RipTide [14]

for convenience and to allow fair comparison of energy overhead.

Pipestitch adds the dispatch operator, SyncPlane, destination buffer-
ing, and bypass for memory units. Pipestitch’s compiler adds anal-

ysis of loop nests and dispatch insertion to RipTide’s compiler in

LLVM 12.0.0. Pipestitch’s mapper adds the option to map all control

flow on PEs to RipTide’s SAT mapper. We heuristically compile

programs with threads if II>1, and without threads otherwise.

We compare Pipestitch to running on the small RISC-V control

core, and to running on RipTide. Both RipTide and Pipestitch use

an 8 × 8 fabric with identical PE mix: 16 arithmetic, 2 multiply, 28

control flow, 14memory, and 4 stream PEs (see [14]). Both Pipestitch

and RipTide are configured with a buffer depth of 4, and all designs

have a 256kBmemory and a 50MHz clock. We synthesize all designs

in a commercial, sub-28nm process using Genus 20.11. We simulate

full applications on the synthesized design using Xcelium 22.03 to

obtain toggle counts and use those counts to annotate the design

in Joules 20.11 and obtain energy estimates. This methodology

provides reasonably accurate estimates of energy and power, but it

does have limitations in modeling wiring, clock distribution, and

glitching. While these limitations affect absolute measurements,

they should not significantly affect trends between the designs.

5.2 Applications
We evaluate six kernels from image processing and linear algebra,

and a 4-layer sparse DNN with a 235 kB memory footprint as a full

application. Our benchmark kernels are dense matrix multiplication

(DMM), sparsematrix dense vectormultiplication (SpMV), dithering

(Dither), sparse matrix slicing (SpSlice), sparse matrix sparse vector

multiplication with dense output (SpMSpVd), and sparse matrix

sparse matrix multiplication with dense output (SpMSpMd). The

4-layer DNN is designed to classify MNIST, and is composed of

SpMSpVd and fused sparsify/ReLU. Layer sparsities range from 97%

to 75%. We evaluate each benchmark on random inputs; further

details are in Table 1.

These applications showcase Pipestitch’s advantages over Rip-

Tide for irregular applications, while also demonstrating Pipestitch’s

ability to run regular applications at the same or better performance.

DMM and SpMV are regular, with affine loop nests and II=1; we ex-

ecute both without threads, running similarly to RipTide. These ap-

plications are well-supported by RipTide; they show that Pipestitch

retains the efficiency of RipTide in its best domain. Dither has an

affine innermost loop, but the body of the loop contains irregular

control-flow which prevents inner-loop pipelineing. SpSlice, SpM-

SpVd, and SpMSpMd operate on sparse inputs and all have irregular

control-flow with long dependence cycles and non-affine loop nests.

RipTide struggles to extract high performance from these irregular

applications, and they show the diversity of applications for which

Pipestitch is beneficial.

Table 1: Benchmark parameters

Benchmark Input size Sparsity Threaded?

DMM 64 × 64 — ✗

SpMV 64 × 64 0.90 ✗

Dither 128 × 128 — ✓

SpSlice 64 × 64 0.89 ✓

SpMSpVd 128 × 128 0.90 (matrix & vector) ✓

SpMSpMd 64 × 64 0.89 (both matrices) ✓

DNN 28 × 28 0.75 - 0.97 ✓

5.3 Pipestitch is Fast

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h0.0

2.5

5.0

7.5

10.0

12.5

Sp
ee

du
p

DMM SpMV Dither SpSlice SpMSpVd SpMSpMd DNN

Figure 13: Speedup compared to scalar for RipTide and
Pipestitch. Per our II heuristic, we run DMM and SpMV
as unthreaded applications on both RipTide and Pipestitch.
Pipestitch maintains performance on DMM, and improves
performance on SpMV with destination buffering reducing
stalls on an imbalanced split-join. The remaining four ker-
nels have irregular control, and threaded configurations are
selected for Pipestitch, which achieves significant speedup.
DNN on Pipestitch uses threaded SpMSpVd, and unthreaded
sparsify/ReLU.

Pipestitch achieves a geomean speedup of 2.55× across all appli-

cations, and a geomean speedup of 3.49× across the five workloads

1417

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia and Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon

Lucia

that benefit from threading. Figure 13 shows speedup for Pipestitch

and RipTide over the scalar baseline. Pipestitch enjoys high perfor-

mance in the five sparse applications with irregular control and long

inner-loop II. In comparison, RipTide’s carry operations block loop

pipelining on these long paths, limiting performance and leaving

resources under-utilized.

5.4 Pipestitch has Low Energy Overhead
Pipestitch improves performance with a small energy overhead: a

geomean increase of 1.11× across all apps, and 1.05× for threaded

apps. Figure 14 shows energy for Pipestitch and RipTide compared

to the scalar baseline. Pipestitch incurs overhead with destination

buffering and mapping CF onto PEs in threaded applications, but

this cost is low for the performance gains achieved. Pipestitch has

higher average power consumption than RipTide, with a geomean

power increase of 3.66× across the five threaded applications, but

energy is the key metric for the extreme edge.

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h

Sc
al

ar
Ri

pT
id

e
Pi

pe
st

itc
h0

2

4

6

No
rm

al
ize

d
En

er
gy

DMM SpMV Dither SpSlice SpMSpVd SpMSpMd DNN

CGRA Memory Scalar Other

Figure 14: Normalized energy for Pipestitch and RipTide
compared to the scalar baseline. Pipestitch incurs a cost with
its destination buffering and CF on PEs, but this cost is low
for the performance gains achieved. DMM sees the greatest
increase in energy because RipTide already runs this appli-
cation with good performance.

5.5 Pipestitch Improves EDP
Pipestitch has a lower EDP for threaded applications, with a ge-

omean reduction of 2.29× across applications. Figure 15 shows

EDP for Pipestitch and RipTide, normalized to RipTide. Pipestitch’s

large speedup and small energy cost allows it to reduce EDP for all

threaded benchmarks. Because DMM already runs well on RipTide,

Pipestitch is only able to match performance, and the energy cost

of destination buffering leads to an increase in EDP.

5.6 Pipestitch has Low Area Overhead
Pipestitch’s implementation is small, with a reasonably small total

area of approximately 1.0mm
2
. Figure 16 shows an area breakdown

for Pipestitch, showing that Pipestitch’s area is primarily dedicated

to its compute fabric (65.2%), with its 256kB memories making up

33.2% of the total design. Pipestitch’s fabric is 1.10× larger than

RipTide’s, due to the additional buffering and SyncPlane.

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h0.00

0.25

0.50

0.75

1.00

1.25

No
rm

al
ize

d
ED

P

DMM SpMV Dither SpSlice SpMSpVd SpMSpMd DNN

Figure 15: Normalized EDP for Pipestitch compared to Rip-
Tide. Pipestitch improves EDP for all threaded apps due to
its large speedup and small energy cost. For DMM, Pipestitch
maintains the performance of RipTide while incurring an
energy cost with destination buffering.

Figure 16: Area break-
down of Pipestitch.
Total area is approx-
imately 1.0mm2 and
is mostly spent on the
CGRA fabric in the
NoC.

PE

23.0%

NoC

39.9%
Other

2.3%
Scalar

Mem
33.2%

5.7 Pipestitch Increases IPC
By aggressively pipelining operations from different threads, Pipestitch

increases the number of executed instructions per cycle (IPC), with

a geomean IPC increase of 2.80×. We measure IPC as the total

number of times all PEs fired during execution divided by the to-

tal number of cycles executed. Figure 17 shows IPC for Pipestitch

and RipTide across kernels. Pipestitch achieves a significant im-

provement in IPC on threaded benchmarks, with a geomean IPC

improvement of 4.30×. DMM and SpMV do not use threads, exe-

cuting their affine, streamed loops with a full pipeline. The data

show that for stream-friendly applications that do not use threads,

Pipestitch’s IPC meets RipTide’s.

For threaded applications, Pipestitch substantially improves inner-

loop IPC. Figure 18 shows per-unit IPC for Pipestitch and RipTide,

which is IPC normalized by the number of PEs required to execute.

The figure breaks per-unit IPC between inner and outer loops. For

a loop (inner or outer), its per-unit IPC is the total number of in-

struction firings by PEs mapped to that loop divided by the total

number of cycles (i.e., loop IPC) normalized by the number of PEs

that execute that loop. Per-unit IPC captures the underutilization of

infrequently firing PEs. Outer-loop PEs that fire once per inner-loop

execution have low IPC, underutilizing the PE. Inner-loop PEs that

fire every cycle have high IPC, fully utilizing the PEs. Pipestitch’s

main improvement is to enable multiple threads’ inner-loop work

1418

Pipestitch: An energy-minimal dataflow architecture with lightweight threads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h0

5

10

15

IP
C

DMM SpMV Dither SpSlice SpMSpVd SpMSpMd

Figure 17: IPC across kernels for RipTide and Pipestitch. IPC
is defined as the total number of times all PEs fire divided by
the total number of cycles. Pipestitch achieves a significant
improvement in IPC on the four threaded kernels.

to execute in parallel, with more inner-loop PEs executing their

operation on each cycle. On the threaded benchmarks, Pipestitch

achieves a 3.62× improvment in inner-loop IPC. Pipestitch also

improves outer-loop IPC, but by less than inner-loop IPC. On the

threaded benchmarks, Pipestitch achieves a 3.51× improvement

in outer-loop IPC. Outer-loop IPC improvement is limited by the

outer loop’s ability to spawn new threads. Long-running inner-loop

threads may preclude future thread spawns, limiting outer-loop

IPC at a cost in utilization, but not in performance.

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h

Ri
pT

id
e

Pi
pe

st
itc

h0.0

0.2

0.4

0.6

0.8

Pe
r-U

ni
t I

PC

DMM SpMV Dither SpSlice SpMSpVd SpMSpMd

Inner Outer

Figure 18: IPC per PE for inner and outer loops. IPC per PE is
the number of times all PEs mapped to the loop fire, divided
by the total number of cycles and the number of PEs mapped
to the loop.

5.8 Pipestitch Balances Speed and Overhead
Pipestitch departs fromRipTide’s energy-focusedmicroarchitecture,

enabling peformance with a small or negligible energy overhead.

Two major differences between Pipestitch and RipTide are that

Pipestitch uses input buffers, while RipTide uses output buffers, and

Pipestitch maps control-flow operations onto PEs, while RipTide

maps them into its NoC. Figure 19 characterizes these differences

and their performance, showing that Pipestitch’s design choices

prioritize performance without introducing a high energy overhead.

The data characterize the cost of source vs. destination buffering,

using normalized performance for RipTide, Pipestitch, and PipeSB,

a Pipestitch variant that uses source buffers (like RipTide). PipeSB

incurs a geomean slowdown of 1.13× compared to RipTide. The

problem is backpressure on multicast outputs; any imbalance in

paths will result in backpressure, and the token must be held in the

source buffer until backpressure clears, thus stalling all paths, not

just the slow path.

Ri
pT

id
e

Pi
pe

SB
Pi

pe
CF

iN
Pi

pe
CF

oP

Ri
pT

id
e

Pi
pe

SB
Pi

pe
CF

iN
Pi

pe
CF

oP

Ri
pT

id
e

Pi
pe

SB
Pi

pe
CF

iN
Pi

pe
CF

oP

Ri
pT

id
e

Pi
pe

SB
Pi

pe
CF

iN
Pi

pe
CF

oP

Ri
pT

id
e

Pi
pe

SB
Pi

pe
CF

iN
Pi

pe
CF

oP

Ri
pT

id
e

Pi
pe

SB
Pi

pe
CF

iN
Pi

pe
CF

oP

0

1

2

3

4

No
rm

al
ize

d
Ti

m
e

DMM SpMV Dither SpSlice SpMSpVd SpMSpMd

Figure 19: Normalized time across kernels with Rip-
Tide, Pipestitch, and PipeSB, a source-buffered fabric with
dispatch and the SyncPlane. For Pipestitch, we further di-
vide results into PipeCFiN, where control-flow operations are
mapped into the NoC when possible, and PipeCFoP, where
all control-flow operations are mapped onto PEs (i.e., using
the same hardware, but different mappings). PipeCFiN and
PipeCFoP follow the II heuristic, so DMM and SpMV are un-
threaded kernels for both.

The plot also shows the effect of Pipestitch’s choice to put

threaded applications’ control-flow operations on PEs (PipeCFoP),

instead of using RipTide’s control-flow-in-NoCmechanism (PipeCFiN).

PipeCFoP and PipeCFiN use the same hardware, but different com-

pilations. DMM and SpMV are run unthreaded for both. The data

show that one of PipeCFiN or PipeCFoP is always fastest: PipeCFiN

on non-threaded applications, as CFiN maintains low inner-loop II,

and PipeCFoP for threaded applications, as CFoP provides buffering

to support deep pipelines. Recall that Pipestitch reasons heuristi-

cally about whether to thread an application, and an application

with II=1 (e.g., DMM and SpMV) compiles control-flow operations

into the NoC and does not use threads.

5.9 Pipestitch can Exploit More Buffering
To maximize throughput, Pipestitch needs enough buffering to

hide imbalanced split-join and carried-dependence-chain lengths.

Figure 20 shows speedup as buffer depth is increased beyond 4, as

used elsewhere. Performance improves as imbalances are resolved,

at which point additional buffering ceases to help. Increasing buffer

depth will come at a cost in area and energy, providing a tradeoff

between performance and energy that can be made at design time.

As an alternative to increasing hardware buffer size, the compiler

could attempt to mitigate imbalance in the DFG. Long paths are

often fundamentally long, giving the compiler little option for rear-

ranging the graph to avoid imbalance, but the compiler could pad

short paths with no-op nodes which provide buffering, at the cost

of a larger graph that makes mapping more difficult and requires

more PEs.

1419

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia and Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon

Lucia

4 8 16 4 8 16 4 8 16 4 8 160.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Sp
ee

du
p

Dither SpSlice SpMSpVd SpMSpMd

Figure 20: Speedup with increasing buffer depth for threaded
kernels. Increasing buffer depth improves performance, but
comes with a cost in area and energy. All other experiments
use a depth of 4 to provide fair comparison with RipTide.

5.10 Pipestitch’s Compiler Quickly Produces
High-Quality Mappings

Memory Stream Arith CF (no Dispatch) Dispatch

DMM SpMV Dither SpSlice SpMSpVd SpMSpMd

Ri
pT

id
e

Pi
pe

CF
iN

Pi
pe

CF
oP

Ri
pT

id
e

Pi
pe

CF
iN

Pi
pe

CF
oP

Ri
pT

id
e

Pi
pe

CF
iN

Pi
pe

CF
oP

Ri
pT

id
e

Pi
pe

CF
iN

Pi
pe

CF
oP

Ri
pT

id
e

Pi
pe

CF
iN

Pi
pe

CF
oP

Ri
pT

id
e

Pi
pe

CF
iN

Pi
pe

CF
oP

0

10

20

30

40

50

60

Nu
m

be
r o

f g
en

er
at

ed
 P

Es

Figure 21: Operator counts across all benchmark kernels for
RipTide and Pipestitch. For Pipestitch, results are split into
PipeCFiN, (control flow mapped to the NoC when possible),
and PipeCFoP (all control flow mapped to PEs). To achieve
better performance, Pipestitch consumes more PEs, espe-
cially for control flow.

Pipestitch compiles and maps threaded programs in a reasonable

amount of time, with a cost in more PEs consumed, but a benefit in

performance due to better pipelining. Figure 21 shows the number

of PEs generated by the compiler for each of our workloads across

three configurations: RipTide, Pipestitch with control flow in the

NoC (PipeCFiN), and Pipestitch with control flow on PEs (PipeC-

FoP). By default, RipTide maps control-flow operations to the NoC.

PipeCFiN has only a modest increase in PE count, but has poor

performance for threaded kernels because it lacks in-PE buffering

to support deep pipelines. For the four threaded benchmark ker-

nels (Dither, SpSlice, SpMSpVd, SpMSpMd), PipeCFiN increases PE

count 28% on average over RipTide. Operator counts for DNN (not

shown in Figure 21) are identical to SpMSpVd, which is the largest

kernel used in DNN. The 28% increase is due to the addition of

dispatch operators, each of which maps to a PE. Compounding

the cost, a dispatch gate prevents instruction fusion optimizations,

such as affine stream generator insertion, leaving unfused instruc-

tions on their own PEs. PipeCFiN also restricts which control-flow

operations map to the NoC to avoid combinational loops. Due to

microarchitecural details, a combinational loop can be activated if

a downstream control-flow operation takes an input from an up-

stream memory unit that performs a bypass. Pipestitch disables the

combinational loop, requiring the involved operation to map to a PE.

PipeCFoP has a steeper cost in PE count, but the ample buffer-

ing in these PEs supports deep pipelines and high performance

for threaded workloads. PipeCFoP requires 33% more PEs over

PipeCFiN and 70% more PEs over RipTide on average, which is

due to mapping all control flow onto PEs. While PipeCFoP con-

sumes more PEs for operations, this tradeoff is a win for performance
when threading, especially for irregular applications with imbal-

anced dependence paths — as demonstrated in subsection 5.8 and

Figure 19.

For non-threaded benchmarks (DMM and SpMV), dispatch op-

erators are not inserted and Pipestitch’s restrictions for in-NoC

control flow do not force any control-flow operations onto PEs.

Consequently, PipeCFiN consumes the same number of PEs as Rip-

Tide. subsection 5.8 and Figure 19 show that Pipestitch with control

flow in-NoC is best for non-threaded kernels, so there is no tradeoff
in the number of generated PEs to achieve performance in this

configuration.

6 CONCLUSION
We have presented Pipestitch, an energy-minimal dataflow architec-

ture with support for lightweight threads to improve performance

without sacrificing energy efficiency. Pipestitch exploits foreach
parallelism to scale performance on sparse computations, fully ex-

ploiting all available energy in extreme-edge deployments to max-

imize application value. Pipestitch explores the tradeoff between

performance and efficiency, and provides a new point on the Pareto

frontier. Pipestitch improves performance by 3.49× over the state-of-

the-art while increasing area by just 1.10× and energy by just 1.11×.
Pipestitch opensmultiple directions for futurework to further im-

prove performance and ease compilation. For small kernels, future

designs could “unroll” multiple copies of the inner-loop and distrib-

ute outer loop iterations spatially in addition to temporal pipelining.

This would require dispatch gates to synchronize across multiple

instances of the same DFG. Future designs could also selectively

time-multiplex low-utilization operations on PEs, freeing PEs for

other work. Time-multiplexing trades performance for energy by

increasing switching activity; choosing when and what to time-

multiplex is an unexplored dimension of this tradeoff.

Another challenge for CGRA architectures is the feasibility and

latency of compilation. CGRA compilation is challenging partly

because it requires whole-program optimization to place-and-route

the program. Pipestitch takes an initial step towards modularizing

compilation by compiling the inner-loop nest once and sharing it

among multiple “calling” threads (i.e., outer-loop iterations). Future

work could develop this into a full spatial ABI for sharing modular

code blocks on a dataflow fabric.

1420

Pipestitch: An energy-minimal dataflow architecture with lightweight threads MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada

ACKNOWLEDGMENTS
We thank the reviewers for their time and thoughtful feedback.

This work was supported by NSF CCF-1815882, and by Semicon-

ductor Research Corporation (SRC) Artificial Intelligence Hardware

(AIHW), a Global Research Collaboration (GRC) program. Nathan

Serafin was supported by Apple’s Fellowship in Integrated Systems,

and Souradip Ghosh by the U.S. Department of Energy Computa-

tional Science Graduate Fellowship (DESC0022158).

REFERENCES
[1] 2021. OpenMP Application Programming Interface 5.2. https://www.openmp.

org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf

[2] Thilini Kaushalya Bandara, Dhananjaya Wijerathne, Tulika Mitra, and Li-Shiuan

Peh. 2022. REVAMP: A Systematic Framework for Heterogeneous CGRA Real-

ization. In Proceedings of the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS 2022). Association for Computing Machinery, New York, NY, USA,

918–932. https://doi.org/10.1145/3503222.3507772

[3] Han Cai, Ji Lin, Yujun Lin, Zhijian Liu, Haotian Tang, Hanrui Wang, Ligeng

Zhu, and Song Han. 2022. Enable Deep Learning on Mobile Devices: Methods,

Systems, and Applications. ACM Trans. Des. Autom. Electron. Syst. 27, 3, Article
20 (mar 2022), 50 pages. https://doi.org/10.1145/3486618

[4] S Alexander Chin, Noriaki Sakamoto, Allan Rui, Jim Zhao, Jin Hee Kim, Yuko

Hara-Azumi, and Jason Anderson. 2017. CGRA-ME: A unified framework for

CGRA modelling and exploration. In 2017 IEEE 28th international conference on
application-specific systems, architectures and processors (ASAP). IEEE, 184–189.

[5] Alexei Colin, Emily Ruppel, and Brandon Lucia. 2018. A Reconfigurable Energy

Storage Architecture for Energy-harvesting Devices. In ASPLOS.
[6] Jason Cong, Hui Huang, Chiyuan Ma, Bingjun Xiao, and Peipei Zhou. 2014. A

Fully Pipelined and Dynamically Composable Architecture of CGRA. In 2014 IEEE
22nd Annual International Symposium on Field-Programmable Custom Computing
Machines. 9–16. https://doi.org/10.1109/FCCM.2014.12

[7] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. 2019. Towards general

purpose acceleration by exploiting common data-dependence forms. In Proceed-
ings of the 52nd Annual IEEE/ACM International Symposium on Microarchitecture.
924–939.

[8] Bradley Denby and Brandon Lucia. 2020. Orbital Edge Computing: Nanosatellite

Constellations as a New Class of Computer System. In ASPLOS 25.
[9] Brad Denby, Emily Ruppel, Vaibhav Singh, Shize Che, Chad Taylor, Fayyaz Zaidi,

Swarun Kumar, Zac Manchester, and Brandon Lucia. 2022. Tartan Artibeus: A

Batteryless, Computational Satellite Research Platform. (2022).

[10] Harsh Desai and Brandon Lucia. 2020. A Power-Aware Heterogeneous Ar-

chitecture Scaling Model for Energy-Harvesting Computers. IEEE Computer
Architecture Letters 19, 1 (2020).

[11] Harsh Desai, Matteo Nardello, Davide Brunelli, and Brandon Lucia. 2022. Ca-

maroptera: A Long-Range Image Sensor with Local Inference for Remote Sensing

Applications. ACM Trans. Embed. Comput. Syst. 21, 3, Article 32 (may 2022),

25 pages. https://doi.org/10.1145/3510850

[12] Milovan Duric, Oscar Palomar, Aaron Smith, Osman Unsal, Adrian Cristal, Mateo

Valero, and Doug Burger. 2014. EVX: Vector execution on low power EDGE cores.

In DATE.
[13] Graham Gobieski, Ahmet Oguz Atli, Kenneth Mai, Brandon Lucia, and Nathan

Beckmann. 2021. Snafu: an ultra-low-power, energy-minimal CGRA-generation

framework and architecture. In 2021 ACM/IEEE 48th Annual International Sympo-
sium on Computer Architecture (ISCA). IEEE, 1027–1040.

[14] Graham Gobieski, Souradip Ghosh, Marijn Heule, Todd Mowry, Tony Nowatzki,

Nathan Beckmann, and Brandon Lucia. 2022. RipTide: A Programmable, Energy-

Minimal Dataflow Compiler and Architecture. In 2022 55th IEEE/ACM Interna-
tional Symposium on Microarchitecture (MICRO). 546–564. https://doi.org/10.

1109/MICRO56248.2022.00046

[15] Graham Gobieski, Brandon Lucia, and Nathan Beckmann. 2019. Intelligence

Beyond the Edge: Inference on Intermittent Embedded Systems. In ASPLOS.
[16] Graham Gobieski, Amolak Nagi, Nathan Serafin, Mehmet Meric Isgenc, Nathan

Beckmann, and Brandon Lucia. 2019. MANIC: A Vector-Dataflow Architecture

for Ultra-Low-Power Embedded Systems. In MICRO.
[17] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matthew

Moe, and R Reed Taylor. 2000. PipeRench: A reconfigurable architecture and

compiler. Computer 33, 4 (2000).
[18] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-

dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. 2012. Dyser:

Unifying functionality and parallelism specialization for energy-efficient com-

puting. IEEE Micro 32, 5 (2012).
[19] Song Han, Xingyu Liu, Huizi Mao, Jing Pu, Ardavan Pedram, Mark A Horowitz,

and William J Dally. 2016. EIE: Efficient inference engine on compressed deep

neural network. ACM SIGARCH Computer Architecture News 44, 3 (2016), 243–
254.

[20] Song Han, Huizi Mao, andWilliam J Dally. 2015. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

arXiv preprint arXiv:1510.00149 (2015).
[21] Song Han, Huizi Mao, andWilliam J Dally. 2016. Deep compression: Compressing

deep neural networks with pruning, trained quantization and huffman coding.

In International Conference on Learning Representations (ICLR).
[22] Song Han, Jeff Pool, John Tran, and William Dally. 2015. Learning both weights

and connections for efficient neural network. Advances in neural information
processing systems 28 (2015).

1421

https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-API-Specification-5-2.pdf
https://doi.org/10.1145/3503222.3507772
https://doi.org/10.1145/3486618
https://doi.org/10.1109/FCCM.2014.12
https://doi.org/10.1145/3510850
https://doi.org/10.1109/MICRO56248.2022.00046
https://doi.org/10.1109/MICRO56248.2022.00046

MICRO ’23, October 28–November 01, 2023, Toronto, ON, Canada
Nathan Serafin, Souradip Ghosh, Harsh Desai, Nathan Beckmann, and Brandon Lucia and Nathan Serafin Souradip Ghosh Harsh Desai Nathan Beckmann Brandon

Lucia

[23] Haitham Hassanieh, Piotr Indyk, Dina Katabi, and Eric Price. 2012. Simple and

practical algorithm for sparse Fourier transform. In Proceedings of the twenty-third
annual ACM-SIAM symposium on Discrete Algorithms. SIAM, 1183–1194.

[24] Kartik Hegde, Hadi Asghari-Moghaddam, Michael Pellauer, Neal Crago, Aamer

Jaleel, Edgar Solomonik, Joel Emer, and Christopher W Fletcher. 2019. Exten-

sor: An accelerator for sparse tensor algebra. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 319–333.

[25] Mark Horowitz. 2014. Computing’s energy problem (and what we can do about

it). In ISSCC.
[26] Manupa Karunaratne, Aditi Kulkarni Mohite, Tulika Mitra, and Li-Shiuan Peh.

2017. Hycube: A cgra with reconfigurable single-cycle multi-hop interconnect.

In DAC.
[27] Ronny Krashinsky, Christopher Batten, Mark Hampton, Steve Gerding, Brian

Pharris, Jared Casper, and Krste Asanovic. 2004. The vector-thread architecture.

In ISCA 31.
[28] Zhaoying Li, Dan Wu, Dhananjaya Wijerathne, and Tulika Mitra. 2022. LISA:

Graph Neural Network based Portable Mapping on Spatial Accelerators. In

2022 IEEE International Symposium on High-Performance Computer Architecture
(HPCA). IEEE, 444–459.

[29] Ji Lin, Ligeng Zhu, Wei-Ming Chen, Wei-Chen Wang, Chuang Gan, and Song

Han. 2022. On-Device Training Under 256KB Memory. In Annual Conference on
Neural Information Processing Systems (NeurIPS).

[30] Brandon Lucia, Vignesh Balaji, Alexei Colin, Kiwan Maeng, and Emily Ruppel.

2017. Intermittent Computing: Challenges and Opportunities. https://doi.org/

10.4230/LIPIcs.SNAPL.2017.8

[31] Bingfeng Mei, Serge Vernalde, Diederik Verkest, Hugo De Man, and Rudy Lauw-

ereins. 2003. ADRES: An architecture with tightly coupled VLIW processor

and coarse-grained reconfigurable matrix. In International Conference on Field
Programmable Logic and Applications. Springer, 61–70.

[32] Ethan Mirsky, Andre DeHon, et al. 1996. MATRIX: a reconfigurable computing

architecture with configurable instruction distribution and deployable resources..

In FCCM, Vol. 96. 17–19.

[33] Mahim Mishra, Timothy J Callahan, Tiberiu Chelcea, Girish Venkataramani,

Seth C Goldstein, and Mihai Budiu. 2006. Tartan: evaluating spatial computation

for whole program execution. ACM SIGARCH Computer Architecture News 34, 5
(2006).

[34] Takashi Miyamori and Kunle Olukotun. 1999. REMARC: Reconfigurable multi-

media array coprocessor. IEICE Transactions on information and systems 82, 2
(1999), 389–397.

[35] Quan M Nguyen and Daniel Sanchez. 2021. Fifer: Practical Acceleration of Irreg-

ular Applications on Reconfigurable Architectures. In MICRO-54: 54th Annual
IEEE/ACM International Symposium on Microarchitecture. 1064–1077.

[36] Chris Nicol. 2017. A Coarse Grain Reconfigurable Array (CGRA) for Statically

Scheduled Data Flow Computing. WaveComputing WhitePaper (2017).
[37] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-

alingam. 2017. Stream-dataflow acceleration. In ISCA 44.
[38] Subhankar Pal, Aporva Amarnath, Siying Feng, Michael O’Boyle, Ronald Dreslin-

ski, and Christophe Dubach. 2021. SparseAdapt: Runtime control for sparse linear

algebra on a reconfigurable accelerator. In MICRO-54: 54th Annual IEEE/ACM
International Symposium on Microarchitecture. 1005–1021.

[39] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-

ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge,

and Ronald Dreslinski. 2018. Outerspace: An outer product based sparse ma-

trix multiplication accelerator. In 2018 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 724–736.

[40] Angshuman Parashar, Michael Pellauer, Michael Adler, Bushra Ahsan, Neal Crago,

Daniel Lustig, Vladimir Pavlov, Antonia Zhai, Mohit Gambhir, Aamer Jaleel, et al.

2013. Triggered instructions: a control paradigm for spatially-programmed

architectures. ACM SIGARCH Computer Architecture News 41, 3 (2013).
[41] Angshuman Parashar, Minsoo Rhu, Anurag Mukkara, Antonio Puglielli, Rang-

harajan Venkatesan, Brucek Khailany, Joel Emer, Stephen W Keckler, and

William J Dally. 2017. SCNN: An accelerator for compressed-sparse convo-

lutional neural networks. ACM SIGARCH computer architecture news 45, 2 (2017),
27–40.

[42] Hyunchul Park, Yongjun Park, and Scott Mahlke. 2009. Polymorphic Pipeline

Array: A Flexible Multicore Accelerator with Virtualized Execution for Mobile

Multimedia Applications. In Proceedings of the 42nd Annual IEEE/ACM Inter-
national Symposium on Microarchitecture (New York, New York) (MICRO 42).
Association for Computing Machinery, New York, NY, USA, 370–380. https:

//doi.org/10.1145/1669112.1669160

[43] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao,

Stefan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. 2017.

Plasticine: A reconfigurable architecture for parallel patterns. In ISCA 44.
[44] V. Puente, C. Izu, R. Beivide, J.A. Gregorio, F. Vallejo, and J.M. Prellezo. 2001. The

Adaptive Bubble Router. J. Parallel Distrib. Comput. 61, 9 (sep 2001), 1180–1208.

https://doi.org/10.1006/jpdc.2001.1746

[45] Alexander Rucker, Matthew Vilim, Tian Zhao, Yaqi Zhang, Raghu Prab-

hakar, and Kunle Olukotun. 2021. Capstan: A Vector RDA for Sparsity.

arXiv:2104.12760 [cs.AR]

[46] Fazle Sadi, Joe Sweeney, Tze Meng Low, James C Hoe, Larry Pileggi, and Franz

Franchetti. 2019. Efficient spmv operation for large and highly sparse matrices

using scalable multi-way merge parallelization. In Proceedings of the 52nd Annual
IEEE/ACM International Symposium on Microarchitecture. 347–358.

[47] Karthikeyan Sankaralingam, Ramadass Nagarajan, Haiming Liu, Changkyu Kim,

Jaehyuk Huh, Doug Burger, Stephen W Keckler, and Charles R Moore. 2003.

Exploiting ILP, TLP, and DLP with the polymorphous TRIPS architecture. In ISCA
30.

[48] Karu Sankaralingam, Tony Nowatzki, Greg Wright, Poly Palamuttam, Jitu Khare,

Vinay Gangadhar, and Preyas Shah. 2021. Mozart: Designing for Software

Maturity and the Next Paradigm for Chip Architectures. In IEEE Hot Chips
33 Symposium, HCS 2021, Palo Alto, CA, USA, August 22-24, 2021. IEEE, 1–20.
https://doi.org/10.1109/HCS52781.2021.9567306

[49] Mahadev Satyanarayanan, Nathan Beckmann, Grace A. Lewis, and Brandon

Lucia. 2021. The Role of Edge Offload for Hardware-Accelerated Mobile Devices.

In HotMobile.
[50] H. Singh, Ming-Hau Lee, Guangming Lu, F.J. Kurdahi, N. Bagherzadeh, and E.M.

Chaves Filho. 2000. MorphoSys: an integrated reconfigurable system for data-

parallel and computation-intensive applications. IEEE Trans. Comput. 49, 5 (2000),
465–481. https://doi.org/10.1109/12.859540

[51] Nitish Srivastava, Hanchen Jin, Jie Liu, David Albonesi, and Zhiru Zhang. 2020.

Matraptor: A sparse-sparse matrix multiplication accelerator based on row-wise

product. In 2020 53rd Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). IEEE, 766–780.

[52] Cheng Tan, Manupa Karunaratne, Tulika Mitra, and Li-Shiuan Peh. 2018. Stitch:

Fusible heterogeneous accelerators enmeshed with many-core architecture for

wearables. In ISCA 45.
[53] Cheng Tan, Chenhao Xie, Ang Li, Kevin J Barker, and Antonino Tumeo. 2020.

OpenCGRA: An open-source unified framework for modeling, testing, and eval-

uating CGRAs. In 2020 IEEE 38th International Conference on Computer Design
(ICCD). IEEE, 381–388.

[54] Frank Tavares. 2019. Kicksat 2. https://www.nasa.gov/ames/kicksat

[55] Christopher Torng, Peitian Pan, Yanghui Ou, Cheng Tan, and Christopher Batten.

2021. Ultra-elastic cgras for irregular loop specialization. In 2021 IEEE Inter-
national Symposium on High-Performance Computer Architecture (HPCA). IEEE,
412–425.

[56] Matthew Vilim, Alexander Rucker, and Kunle Olukotun. 2021. Aurochs: An

architecture for dataflow threads. In 2021 ACM/IEEE 48th Annual International
Symposium on Computer Architecture (ISCA). IEEE, 402–415.

[57] Dani Voitsechov and Yoav Etsion. 2014. Single-graph multiple flows: Energy

efficient design alternative for GPGPUs. ACM SIGARCH computer architecture
news 42, 3 (2014).

[58] Dani Voitsechov, Oron Port, and Yoav Etsion. 2018. Inter-thread communication

in multithreaded, reconfigurable coarse-grain arrays. In MICRO 51.
[59] Bo Wang, Manupa Karunarathne, Aditi Kulkarni, Tulika Mitra, and Li-Shiuan

Peh. 2019. Hycube: A 0.9 v 26.4 mops/mw, 290 pj/op, power efficient accelerator

for iot applications. In 2019 IEEE Asian Solid-State Circuits Conference (A-SSCC).
IEEE, 133–136.

[60] Jian Weng, Sihao Liu, Vidushi Dadu, Zhengrong Wang, Preyas Shah, and Tony

Nowatzki. 2020. DSAGEN: synthesizing programmable spatial accelerators. In

ISCA 47.
[61] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki. 2020.

A Hybrid Systolic-Dataflow Architecture for Inductive Matrix Algorithms. In

2020 IEEE International Symposium on High Performance Computer Architecture
(HPCA). 703–716. https://doi.org/10.1109/HPCA47549.2020.00063

[62] Jian Weng, Sihao Liu, Zhengrong Wang, Vidushi Dadu, and Tony Nowatzki. 2020.

A Hybrid Systolic-Dataflow Architecture for Inductive Matrix Algorithms. In

HPCA.
[63] Neil Weste and David Harris. 2011. CMOS VLSI Design: A Circuits and Systems

Perspective (4th ed.). Addison-Wesley.

[64] Dhananjaya Wijerathne, Zhaoying Li, Anuj Pathania, Tulika Mitra, and Lothar

Thiele. 2021. HiMap: Fast and scalable high-quality mapping on CGRA via

hierarchical abstraction. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems (2021).

[65] Lisa Wu, Andrea Lottarini, Timothy K. Paine, Martha A. Kim, and Kenneth A.

Ross. 2014. Q100: The Architecture and Design of a Database Processing Unit. In

Proceedings of the 19th International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (Salt Lake City, Utah, USA) (ASPLOS
’14). ACM, New York, NY, USA, 255–268. https://doi.org/10.1145/2541940.2541961

[66] Guowei Zhang, Nithya Attaluri, Joel S Emer, and Daniel Sanchez. 2021. Gamma:

Leveraging Gustavson’s algorithm to accelerate sparse matrix multiplication. In

Proceedings of the 26th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems. 687–701.

1422

https://doi.org/10.4230/LIPIcs.SNAPL.2017.8
https://doi.org/10.4230/LIPIcs.SNAPL.2017.8
https://doi.org/10.1145/1669112.1669160
https://doi.org/10.1145/1669112.1669160
https://doi.org/10.1006/jpdc.2001.1746
https://arxiv.org/abs/2104.12760
https://doi.org/10.1109/HCS52781.2021.9567306
https://doi.org/10.1109/12.859540
https://www.nasa.gov/ames/kicksat
https://doi.org/10.1109/HPCA47549.2020.00063
https://doi.org/10.1145/2541940.2541961

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Architecture for the extreme edge
	2.2 Drawbacks of energy-minimal dataflow

	3 Pipestitch Overview
	4 Pipestitch Implementation
	4.1 The Pipestitch Programming Model
	4.2 The Pipestitch Threading Model
	4.3 Executing Lightweight Dataflow Threads
	4.4 Synchronized Threads and Ordering
	4.5 Pipestitch Microarchitecture
	4.6 Synchronization with the SyncPlane
	4.7 Reducing Pipeline Stalls
	4.8 Compiling for Pipestitch

	5 Evaluation
	5.1 Methodology
	5.2 Applications
	5.3 Pipestitch is Fast
	5.4 Pipestitch has Low Energy Overhead
	5.5 Pipestitch Improves EDP
	5.6 Pipestitch has Low Area Overhead
	5.7 Pipestitch Increases IPC
	5.8 Pipestitch Balances Speed and Overhead
	5.9 Pipestitch can Exploit More Buffering
	5.10 Pipestitch's Compiler Quickly Produces High-Quality Mappings

	6 Conclusion
	Acknowledgments
	References

