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Abstract—Energy-harvesting devices are the key to enabling future ubiquitous sensing applications, because they are long lived and
require little maintenance. On-device processing of sensed data, such as images, avoids the high energy cost of communicating data to
the edge or cloud. This work observes that the on-device computing performance of an energy-harvesting system depends not only on
execution time, but also on energy collection time. With high input power, a faster, higher-power processor quickly completes processing
because energy collection time is low. At low input power, a slower, more energy efficient processor minimizes end-to-end latency by
more judiciously using the slowly collected energy. This paper describes the PHASE model, which captures this charge latency effect.
Using the model, we develop PHASE architectures, which include heterogeneous processing components of different efficiency and
performance. A PHASE architecture uses the combination of heterogeneous components that minimizes end-to-end latency, including
recharge time. Our results show that the PHASE model helps understand end-to-end latency in an energy harvesting device, yielding
PHASE architectures that complete up to 9× more work on a fixed energy budget than typical energy-harvesting architecture.

Index Terms—Energy-harvesting, Heterogenous Architectures, Accelerators, Power-aware Computing.
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1 INTRODUCTION

Future deeply-embedded applications such as civil infras-
tructure and wildlife monitoring will depend on sensor deploy-
ments that scale to billions or trillions of devices and operate
sustainably with little maintenance over long time periods.
Energy-harvesting devices meet the requirements of these ap-
plications by integrating small, cheap energy collection and
storage elements, with communication, computing, and sensing
components. Avoiding the need for battery replacements, en-
ergy harvesting devices allow for long-term deployments with
little maintenance. However, the performance of such systems
depends on energy availability in the device’s environment,
warranting special attention from computer architects that is
typically not given to today’s energy-harvesting computer sys-
tems.

The architecture of a typical energy-harvesting device is
shown in Figure 1a: a low-power microcontroller (MCU) con-
nected to peripherals and a power system. Energy-harvesting
components collect and store energy from sources, such as
radio waves (RF), solar, or thermal gradients. The system
collects and stores sensor data, processing it using its MCU,
which may include basic linear algebra acceleration [1], and
may in the future include more sophisticated vector units [2] or
accelerators [3], [4].

Since communication typically dominates power consump-
tion, recent work [2], [5] presents increasingly complex on-
device computation (e.g., ML inference) to avoid transmitting
uninteresting data. As communication is less frequent, com-
puting energy becomes comparable to communication energy,
requiring efficient on-device computing.

Computation on an energy-harvesting device is driven by
collected energy. A device may collect energy up front, before
executing and run without interruption. Alternatively, a device
may collect small amounts of energy at a time and operate in-
termittently [6], relying on checkpoints [6]–[9] or tasks [10]–[12]
to ensure correctness and progress across power interruptions.
Energy collection time is fundamentally limited by the input

MCU

Energy 
Harvesting & 

Storage

Sensors & 
Peripherals

(a)

Sensors & 
Peripherals

Energy Harvesting & 
Storage

Big 
Core

Little Cores Accelerators

1GeMM 2 n

1DNN 2 n

1FFT 2 n

(b)

PHASE 
Serial

EH
Sensor

EH 
Sensor

PHASE 
Parallel Partition

Input 
Power

Low Power High Power

time

70% 30% 20% 80%

High-performance,
less efficient core

Low-performance,
more efficient core

(c)

Fig. 1: (a) shows a typical energy-harvesting architecture, with
a simple processing core. (b) shows our PHASE architecture
with heterogeneous single-workload accelerators and cores. (c)
shows how PHASE-serial and PHASE-parallel architectures
select fastest architectural configuration depending on input
power.

power available in the environment. If power is high, the device
charges quickly, spending less time charging and more time
computing. If power is low, the device charges slowly, spending
more time collecting energy and less time computing.

We observe that end-to-end latency for a fixed workload
depends not only on compute time, but also recharge time.
Consequently, the selection of which architecture mimimizes
end-to-end latency depends not only its raw performance, but
also on the efficiency with which it uses the energy collected
over time. Moreover, the best choice of architecture varies
dynamically as input power varies: higher power needs higher
performance, lower power needs higher efficiency. Energy-
harvesting architectures should use heterogeneity to vary per-
formance and energy efficiency to optimize end-to-end latency.

We present PHASE, a class of heterogeneous architectures
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and a framework for modeling their end-to-end performance
on harvested energy. PHASE helps understand performance
across power environments, enabling architects and system de-
signers to optimize for a workload’s end-to-end latency. PHASE
additionally helps understand the optimal dynamic partition-
ing of an application across parallel computing resources in
an energy-harvesting system. We validate PHASE against real-
world accelerator architectures, showing that PHASE opti-
mizes end-to-end workload latency with power-dependent core
switching, increasing the total work done by up to 9×. PHASE
also provides optimal parallel partitioning, improving end-to-
end latency by up to 10× compared to static partitioning.

2 PERFORMANCE MODEL FOR ENERGY-HARVESTING
SYSTEMS

PHASE analytically models the end-to-end latency of an arbi-
trary computational workload on an energy-harvesting com-
puter system. Unlike a system with continuously available
power, the end-to-end latency of an energy-harvesting sys-
tem (te2e) includes recharge latency (trecharge), which depends
on execution time (texec), input power (P input), and power
consumption (P exec):

te2e = texec + trecharge

= texec +
Eexec

P input

= texec +
texec × P exec

P input

(1)

Equation (1) shows that input power dictates performance by
governing recharge latency.

This basic equation models a situation where workload
execution and recharging are not simultaneous. Most systems
recharge energy as they execute [13], [14]:

te2e = max(texec,
texec × P exec

P input
) (2)

The end-to-end latency depends on execution time and recharg-
ing time. Input power determines which one of these parame-
ters dominates te2e.
The Need for Single-workload Heterogeneous Architectures
Our PHASE model shows that energy-constrained systems
should be heterogeneous to improve performance. As input
power changes, a system should adapt its architecture accord-
ingly. At high input power, execution time matters most and the
system should optimize with a high performance architecture,
even if at a cost in energy. At low input power, recharge time
matters most; the system should prioritize efficiency, even if at
a cost in execution time.

3 HETEROGENEOUS PHASE ARCHITECTURES FOR
ENERGY-CONSTRAINED SYSTEMS

Using our model, we present PHASE architectures, which are
systems that have single-workload heterogeneity, incorporating
many architectural components (e.g., processors, accelerators,
ASICs) capable of performing the same computation with dif-
ferent performance and efficiency. A PHASE architecture mon-
itors input power and chooses the architecture that minimizes
latency at a power level. A system could, for example, include
heterogeneous CPUs [15], could vary core settings (e.g., DVFS),
and could use ASICs [16] or emerging core microarchitec-
tures [2], [17].

We envision two types of PHASE architectures. The first
type is PHASE-serial, in which a single component runs a

workload at a time, depending on input power. Components
share last-level cache, enabling efficient switching between
component architectures without data movement (assuming
the same input format).

The second type is PHASE-parallel, which partitions a work-
load to run in parallel on heterogeneous components. Partition-
ing a workload and mapping it onto parallel components is a
key research challenge of PHASE-parallel operation. Figure 1c
is a sketch of a PHASE architecture.

A challenge faced by both types of PHASE architectures
is deciding when and how often to switch between the ar-
chitectural components (like energy-aware scheduling [7]). In
image-processing workloads (e.g., a smart camera [5], [18]), for
example, the system could monitor input power and assess
whether to switch at each new image. Translating between
different components’ input formats is another key research
challenge.

The PHASE model described in Section 2 is directly applica-
ble to a PHASE-serial system: to decide whether to switch, the
system evaluates the end-to-end latency of each architectural
component for the current input power, choosing the fastest
option. We next extend the PHASE model to PHASE-parallel ar-
chitectures, enabling power-aware distribution of parallel work
across architectural components with differing performance
and efficiency.

3.1 Modeling PHASE-Parallel Architectures

In a PHASE-parallel architecture, the increased energy recharg-
ing cost of parallelism must not outweigh the parallel speedup.
PHASE models the effect of parallelization on end-to-end la-
tency, as the input power varies.

Figure 1b shows an example of a PHASE architecture,
where we have one big core, several small cores, and a set of
application-specific accelerators. For a system with n architec-
tural components, in which the ith component runs α(i) fraction
of the parallelizable workload, (2) becomes:

te2e = max(tserial exec + tparallel exec, trecharge total)

= max{tserial exec +max
[
α(i) ∗ tparallel exec(i)

]n
i=0

,

Eserial exec +
n∑

i=0

α(i) ∗ Eparallel exec(i)

P input
}

(3)

Here, tserial exec andEserial exec are the latency and energy costs of
the serial part of the workload. tparallel exec(i) and Eparallel exec(i)

represent the latency and energy cost of the ith-architectural
component running the entire parallel part. The choice of
component to run the serial part of the workload is a (sim-
ple) PHASE-serial choice. Equation (3) shows that end-to-end
latency in a PHASE-parallel architecture depends on choosing
the optimal workload partitioning, α, which in turn depends
on input power.

4 RESULTS & DISCUSSIONS

We evaluated PHASE in simulation to show that power-
dependent core switching in PHASE-serial optimizes latency
and increases the total work done in a fixed amount of time.
We also show that dynamically partitioning parallel work ac-
cording to input power in a PHASE-parallel architecture yields
speedup over a power-oblivious, fixed partitioning.
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Fig. 2: (a) Energy vs Latency for different DNN accelerators.
(b) and (c) End-to-end inference latency vs input power for
different accelerators.

4.1 PHASE-serial Architecture Improves Latency
We show that PHASE-serial outperforms a fixed architecture on
AlexNet inference [19] under variable input power. Figure 2a
shows the energy and latency for a single AlexNet inference on
several different architectures, taken from their publications [3],
[4], [20]–[23]. Using the analytical model in Section 2, we eval-
uate two PHASE-serial architectures: one switching between
four lower-power DNN accelerators [20]–[23], and one with
the two higher-power accelerators [3], [4]. PHASE-serial selects
the accelerator with the lowest end-to-end latency for a given
power level. We then compare our PHASE-serial architecture
with systems based on each of the accelerators individually.

Figures 2b and 2c plot end-to-end inference latency for these
PHASE-serial architectures and for each individual accelerator
as power varies. The PHASE-serial architectures switch accel-
erators depending on the input power level, netting a 10×
improvement in end-to-end latency at low power levels for the
low-power accelerators 2b, and a similar benefit for the high-
power accelerators 2c. The data are an upper bound on per-
formance, ignoring work migration overheads and granularity,
but show the promise of PHASE-serial heterogeneity.

4.2 PHASE Increases Efficiency
PHASE increases the total work completed in a fixed amount
of time and energy compared to a baseline oblivious to input
power. To validate this, we ran a discrete-event simulation
counting total AlexNet inference completions using the low-
power PHASE-serial architecture shown in Figure 2b, using
our empirical AlexNet energy and latency values in simula-
tion. To simulate input power, we model a solar panel with
10cm2 area and 20% efficiency and real irradiance traces from
the EnHANTs dataset [24]. We simulated three traces: In-
doors+Outdoors, Roadtrip, and New York at Night. Across all
three traces, we compared our PHASE-serial architecture with
systems based on each accelerator individually, counting the
total AlexNet iterations completed in the entire trace duration.

PHASE BCNN-Accel Reconf-DNN LNPU CirCNN

Ac
ce

le
ra

to
r 

Se
le

ct
ed

10 20 30 40 50 60 70
Time (mins)

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7

In
pu

t 
po

we
r (

m
W

)

(a)

Ac
ce

le
ra

to
r 

Se
le

ct
ed

10 20 30 40 50 60 70
Time (mins)

0
10
20
30
40
50
60
70

In
pu

t 
po

we
r (

m
W

)

(b)

Ac
ce

le
ra

to
r 

Se
le

ct
ed

10 30 50 70 90 110 130 150 170
Time (mins)

0

10

20

30

40

In
pu

t 
po

we
r (

m
W

)

(c)

Indoors +
Outdoors

Road Trip NYC Nightime0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d 
W

or
kl

oa
d 

Ite
ra

tio
ns

(d)

Fig. 3: Timeline of our simulation on three different input
traces: (a)Indoors+Outdoors, (b) Road trip and (c) NYC night-
time. (d) shows the total iterations of AlexNet inference com-
pleted by the different systems, normalized to the PHASE-serial
architecture.

Figure 3(a–c) show that PHASE-serial minimizes end-to-end
latency as power varies. Figure 3(d) compares PHASE-serial
with each accelerator individually, showing AlexNet inferences
completed for each irradiance trace. PHASE-serial completes
up to 9× more work with low power (e.g., CircCNN, NYC
Night) and 2× more work with high power (e.g., BCNN).

4.3 PHASE Optimally Partitions Parallel Work
Equation (3) shows that end-to-end latency for a parallel work-
load depends on both the parallel partitioning (α) and input
power. Accordingly, as input power varies, the value of α
that achieves the minimum end-to-end latency also varies.
PHASE-parallel architectures dynamically vary α with input
power to optimize end-to-end latency, which we refer to as
optimal parallel partitioning. Figure 4 models PHASE-parallel’s
partitioning. The plots assume two heterogeneous cores, A and
B. The data compare PHASE’s dynamic, input-dependent par-
titioning to static partitioning. Each architecture’sA andB have
a different relative power consumption and latency to complete
the modeled workload. The plots show the optimal parallel
partition on the left y-axis, solid curve, and the resultant end-
to-end latency on the right y-axis, dashed curve. The data
show that the latency of different partitions varies with power
by an order of magnitude. Figure 4c shows speedup, using the
PHASE model to optimally partition versus a fixed partition
for several different power and latency ratios. The data show
that PHASE’s optimal partitioning translates into a 1.6 − 10×
speedup compared to fixed partitioning.

5 CONCLUSION

In this paper, we presented PHASE, an architecture and per-
formance model for heterogeneous energy-harvesting systems.
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Fig. 4: (a) and (b) compare the end-to-end workload latencies
of two PHASE-parallel architectures with a fixed naive 50 : 50
partitioning, for different input power levels. (c) shows the
average slowdown of different naive partitionings compared
to our PHASE-based partitioning for different PHASE-parallel
architectures.

The PHASE model shows that input power dictates perfor-
mance in energy-harvesting systems because recharging takes
time. Based on the PHASE model, our architectures, PHASE-
serial and PHASE-parallel leverage heterogeneity to choose a
configuration of architectural components that minimize la-
tency for a given input power level. Our evaluation shows that
a PHASE-serial multi-accelerator architecture can perform up
to 9× the work done by a single-accelerator system. Further,
the optimal partitioning of work in PHASE-parallel systems
provides up to 10× speedup over naive, fixed partitionings.
We envision that the PHASE model will guide researchers in
defining future, high-performance energy-harvesting systems.
Future work should explore efficient adaptation in PHASE
architectures, including support to translate between input
formats and to schedule architectural reconfiguration.
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